


Application Handbook for prepFAST S

Ultraclean Sample Introduction System

for NexION 5000 ICPMS

Table of Contents

BOE	3
Hydrofluoric Acid	15
HNO ₃	
H ₂ SO ₄	
ТМАН	
Ultrapure Water	63

BOE

Automated Analysis of Semiconductor Grade BOE with prepFASTS and NexION[®] 5000 ICPMS

Author: Kevin Wiederin

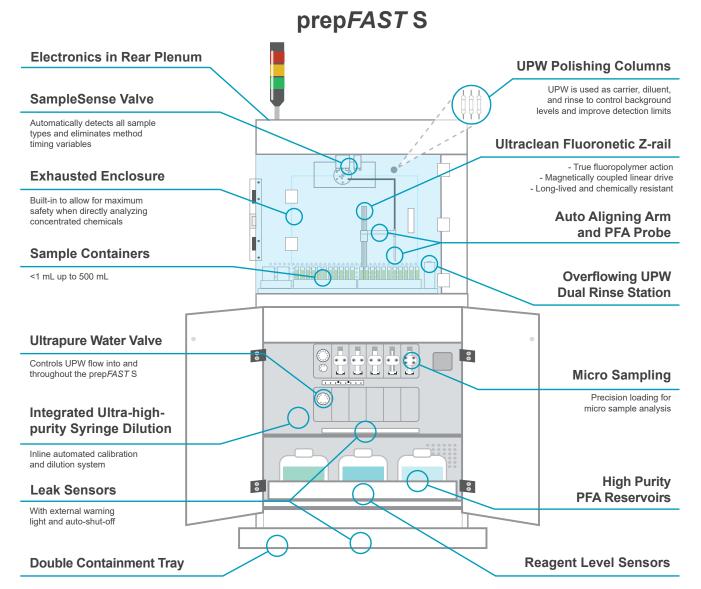
Introduction

Advances in semiconductor technology and decreasing tolerances in microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis – within the fab and throughout the supply chain.

Buffered oxide etchants (BOEs) are blends of hydrofluoric acid, ammonium fluoride, surfactants, and ultrapure water utilized in the semiconductor industry to etch thin films of silicon wafers. The reduction of potential contamination of silicon wafers during the etching process is crucial, as trace metal, particulate, and organic

contaminants can alter the functionality of semiconductors. At the sub-ppt level, environmental contaminants are difficult to control and can easily contaminate a BOE sample if not properly handled.

The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability and providing sub-ppt detection limits for critical semiconductor elements.


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.

Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

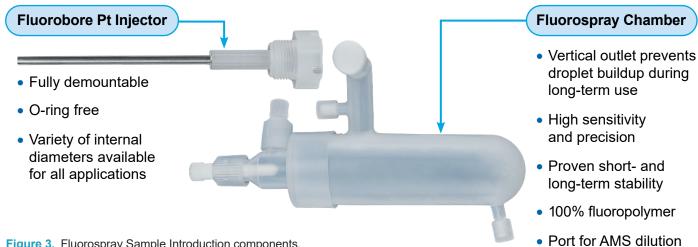


Figure 3. Fluorospray Sample Introduction components.

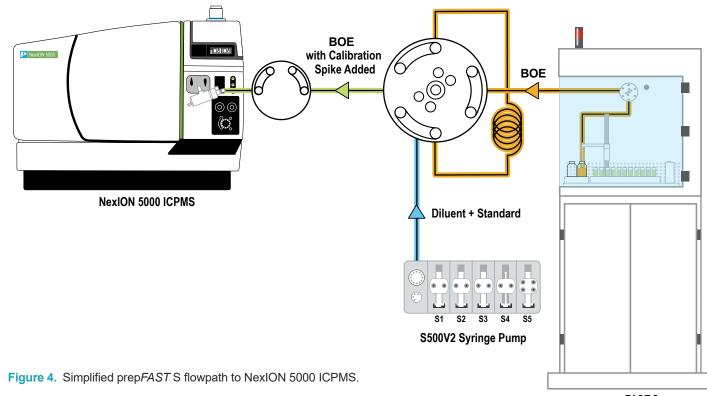


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

Experimental: Reagents and Samples

Commercially available BOE was used as sample for all analyses. A 200 ppt, 1% HNO_3 mixed-element standard was prepared from a 100 ppb standard; Si, S, and P were spiked at 200 ppb. All samples and standards were automatically spiked in-line to a final concentration of 0.5% HNO_3 from an onboard reagent supply vessel (containing 70% HNO_3), to match the sample to the calibration standard and stabilize the spiked elements.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO_3 , and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared from the stock solutions automatically by the prep*FAST* S. UPW was used as the carrier solution, and samples were introduced at 200 µL/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering, and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally.

Table 2. ICPMS Analytical Conditions.

Element	Q1 Mass	Q3 Mass	Power (W)	Reaction Gas	Reaction Gas Flow	RPq	Element	Q1 Mass	Q3 Mass	Power (W)	Reaction Gas	Reaction Gas Flow	RPq
Li	7	7	600	NH ₃	0.2	0.45	Rh	103	103	600	-	0	0.25
Be	9	9	1600	-	0.2	0.25	Ag	107	107	600	_	0	0.25
B	11	11	600	_	0	0.25	Cd	111	111	1600	_	0	0.25
Na	23	23	600	- NH ₃	1	0.25	In	115	115	1600	_	0	0.25
Mg	24	24	600	NH ₃	0.6	0.45	Sn	120	120	1600	NH ₃	0.3	0.25
Al	27	27	600	NH ₃	1	0.45	Cs	133	133	1600	-	0	0.25
Si	28	44	1500	O ₂	3	0.1	Ba	138	138	1600	_	0	0.25
S	32	48	1500	0 ₂	3	0.1	La	139	139	1600	_	0	0.25
P	31	47	1500	0 ₂	3	0.1	Ce	140	140	1600	_	0	0.25
ĸ	39	39	600	NH ₃	0.6	0.8	Pr	141	141	1600	_	0	0.25
Са	40	40	600	NH ₃	0.6	0.8	Nd	146	146	1600	_	0	0.25
Sc	45	61	1500	0 ₂	0.5	0.45	Gd	157	157	1600	_	0	0.25
Ti	48	64	1500	0 ₂	0.6	0.45	Tb	159	159	1600	_	0	0.25
V	51	67	1500	0 ₂	1	0.45	Dy	164	164	1600	-	0	0.25
Cr	52	52	600	NH ₃	0.2	0.45	Ho	165	165	1600	-	0	0.25
Mn	55	55	600	NH ₃	0.2	0.8	Er	166	166	1600	_	0	0.25
Fe	56	56	600	NH ₃	1	0.8	Tm	169	169	1600	_	0	0.25
Ni	58	58	600	NH ₃	0.3	0.45	Yb	174	174	1600	_	0	0.25
Со	59	59	600	NH ₃	0.6	0.45	Lu	175	175	1600	-	0	0.25
Cu	63	63	600	NH ₃	0.2	0.45	Hf	178	178	1600	-	0	0.25
Zn	64	64	1600	NH ₃	0.2	0.45	Та	181	181	1600	-	0	0.25
Ga	71	71	600	-	0	0.45	W	184	184	1600	-	0	0.25
As	75	91	1500	0 ₂	0.3	0.45	Re	185	185	1600	-	0	0.25
Rb	85	85	600	-	0	0.25	Os	189	189	1600	-	0	0.25
Sr	88	88	1600	-	0	0.25	lr	193	193	1600	-	0	0.25
Y	89	89	1600	-	0	0.25	TI	205	205	1600	-	0	0.25
Zr	90	90	1600	-	0	0.25	Pb	208	208	1600	-	0	0.25
Nb	93	93	1600	-	0	0.25	Bi	209	209	1600	-	0	0.25
Мо	98	98	1600	-	0	0.25	U	238	238	1600	-	0	0.25

Table 1. Operating Parameters BOE Analysis.

Parameter	Cool Plasma (STD)	Cool Plasma (DRC)	Warm Plasma (DRC)	Hot Plasma (DRC)	Hot Plasma (STD)		
ICP RF Power (W)	6	600	1400		1600		
Nebulizer Gas Flow (L/min)	0.92	0.84 0.94		0.98	0.96		
Reaction Gas	-	NH ₃	0 ₂	$NH_3 \text{ or } O_2$	-		
AMS Gas Flow (L/min)		0.1	0.1 0.05				
Auxiliary Gas Flow (L/min)		1.2					
Plasma Gas Flow (L/min)		16					
Sample Flow Rate (mL/min)			0.2				
Nebulizer			Fluoroneb PFA-ICI	N			
Spray Chamber			Fluorospray PFA				
Torch		Sil	ວ Ultra High Purity G	Quartz			
Injector		Fluorobor	e Straight-bore 2.5 r	nm Platinum			
ICPMS Cones	P	atinum-tipped Sam	oler and Skimmer wi	th Nickel Hyperskir	nmer		
Hyperskimmer Voltage	-30	-50		5			
OmniRing Voltage	-220	-210	-160	-165	-165		
Inner Target Lens Voltage	6						
Outer Target Lens Voltage	0 -17						

BOE

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt (Si 1000x higher)

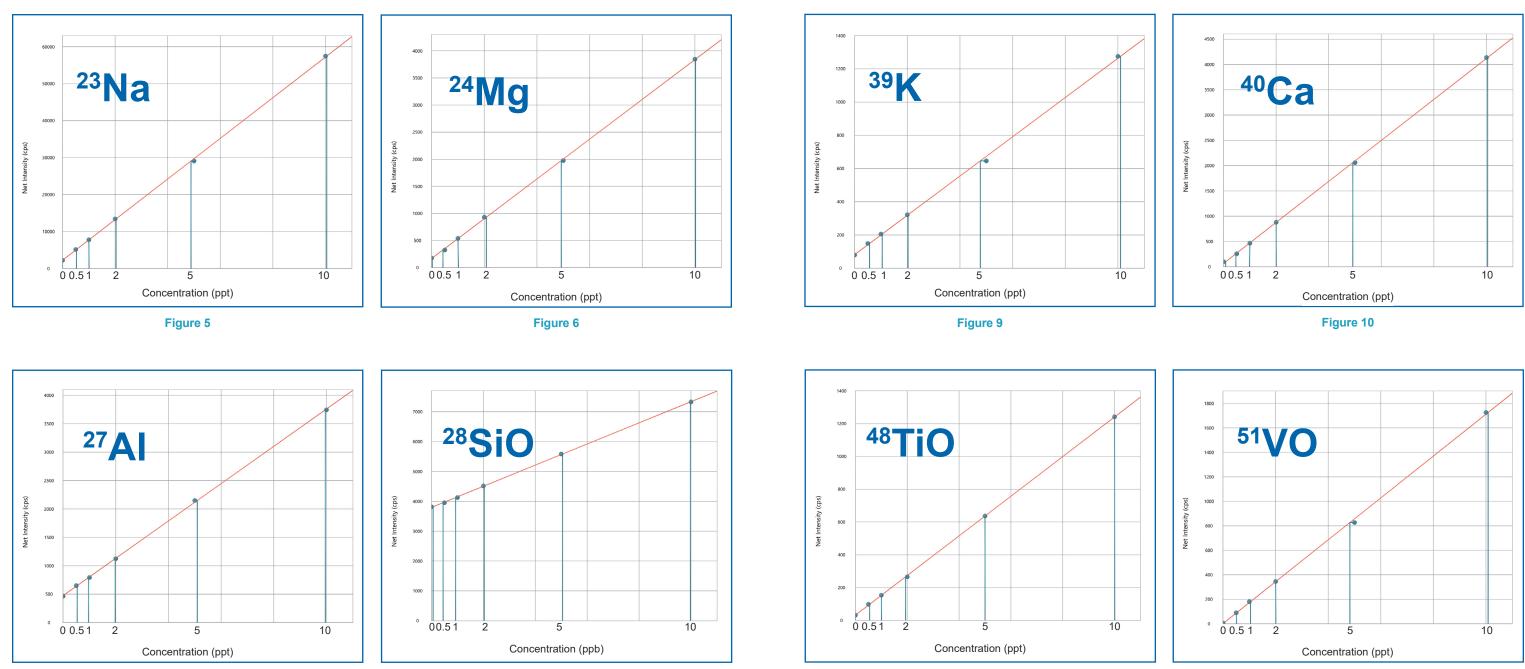


Figure 11

Figure 12

All calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt

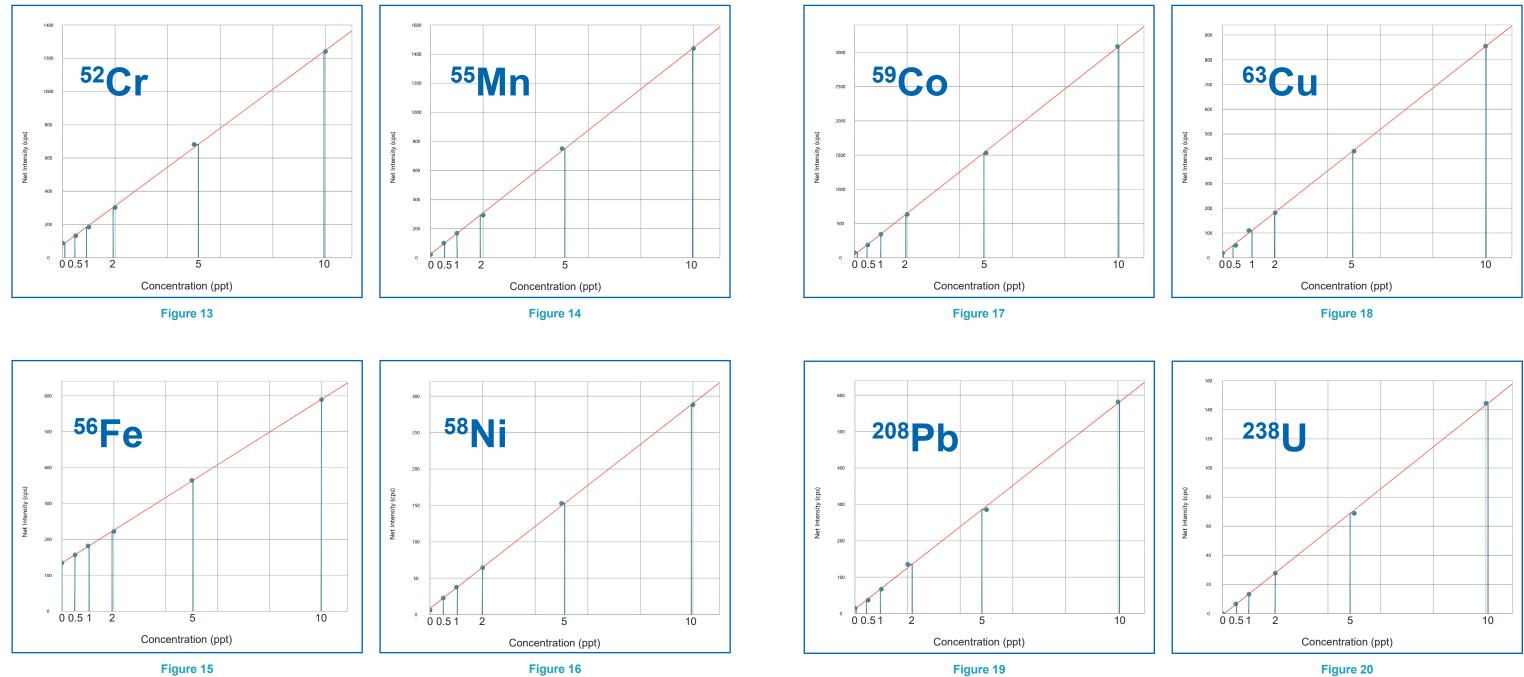


Figure 20

Results and Discussion

Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD), and correlation coefficient (R) for all elements measured in undiluted BOE. Blank subtraction was not used for the determination of BECs or LODs in this study.

Calibrations were automatically prepared at 0, 0.5, 1, 2, 5, and 10 ppt automatically with the prep*FAST* S (Si, S, and P were spiked at 0, 0.5, 1, 2, 5, and 10 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in undiluted BOE.

Combining the prep*FAST* S with the advantages of various plasma modes, QQQQ filtering, and DRC technology allows major contamination-prone elements to be analyzed in the sub-ppt range. These advantages make it possible to achieve sub-ppt or single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Al, K, Ca, and Fe in undiluted BOE. By utilizing the enclosed and vented sampling area in the prep*FAST* S, these results were achieved in a non-clean room environment. The correlation coefficients demonstrate the accuracy of the prep*FAST* S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3. BECs	, Calibration Lineari	ty, and LODs in BO
---------------	-----------------------	--------------------

Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	0.05	0.02	0.999	Rh	0.02	0.07	0.999
В	5	3	0.996	Ag	0.03	0.07	0.999
Na	0.4	0.2	0.999	In	0.005	0.07	0.999
Mg	0.5	0.3	0.999	Sn	6.1	1.6	0.997
Al	1.5	0.9	0.999	Cs	0.2	0.2	0.999
Si	10.1 (ppb)	1.8 (ppb)	0.999	Ва	0.1	0.1	0.999
S	9.0 (ppb)	3.8 (ppb)	0.999	La	0.06	0.2	0.999
Р	6.1 (ppb)	0.9 (ppb)	0.999	Ce	0.06	0.1	0.999
К	0.7	0.6	0.999	Pr	0.06	0.08	0.999
Ca	0.2	0.08	0.999	Nd	0.03	0.3	0.999
Sc	0.05	0.1	0.999	Gd	0.1	0.1	0.999
Ti	0.3	0.1	0.999	Tb	0.02	0.08	0.999
V	0.01	0.08	0.999	Dy	0.08	0.2	0.999
Cr	0.7	0.3	0.999	Ho	0.05	0.1	0.999
Mn	0.2	0.1	0.999	Er	0.1	0.06	0.999
Fe	2.9	1.2	0.999	Tm	0.05	0.08	0.999
Ni	0.3	0.4	0.999	Yb	0.01	0.09	0.999
Со	0.1	0.05	0.999	Lu	0.01	0.06	0.999
Cu	0.2	0.3	0.999	Hf	0.05	0.1	0.999
Zn	3.4	0.5	0.995	Ta	0.02	0.2	0.999
Ga	0.03	0.07	0.999	W	0.1	0.3	0.999
As	3.5	2.4	0.999	Re	0.1	0.2	0.999
Rb	0.02	0.04	0.999	Os	0.7	0.5	0.999
Sr	0.1	0.09	0.999	lr	0.09	0.06	0.999
Y	0.05	0.05	0.999	Pb	0.2	0.2	0.999

OE.

Conclusions

Fully automated analysis of Buffered Oxide Etchant samples was performed using the prepFAST S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prepFAST S achieved linear calibration curves for all elements analyzed. The triple quadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 50 elements were sub-ppt, while Si, P, and S were low to sub-ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- · Automatically performs calibration using MSA or external calibration
- · Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents - without timing or method adjustment

Hydrofluoric Acid **Automated Analysis of Semiconductor Grade HF**

with prepFASTS and NexION 5000® ICPMS

Author: Kevin Wiederin

Introduction

Advances in semiconductor technology decreasing tolerances in and microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis within the fab and throughout the supply chain.

Hydrofluoric Acid is widely utilized in the

semiconductor industry. The reduction of

potential contamination of silicon wafers

during the cleaning process is crucial

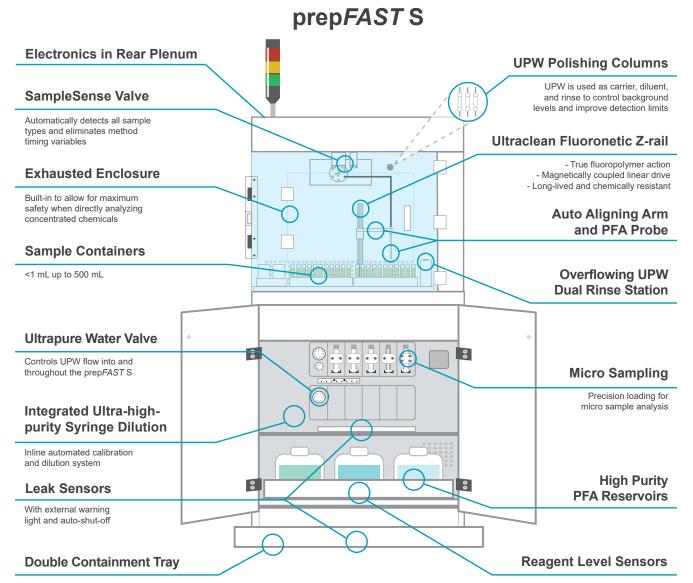
as trace metal, particulate, and organic

contaminants can alter the functionality

of the semiconductors. At the ppt level, environmental contaminants are difficult to control and can easily contaminate a HF sample if not properly handled.

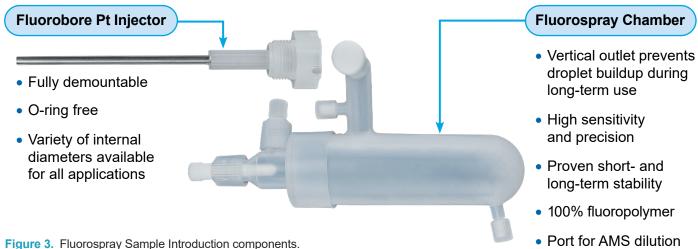
The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability and providing sub-ppt detection limits for critical semiconductor elements.

E S I © Elemental Scientific | 7277 World Communications Drive Omaha, NE 68122 Tel: 1-402-991-7800 sales@icpms.com www.icpms.com


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.


Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

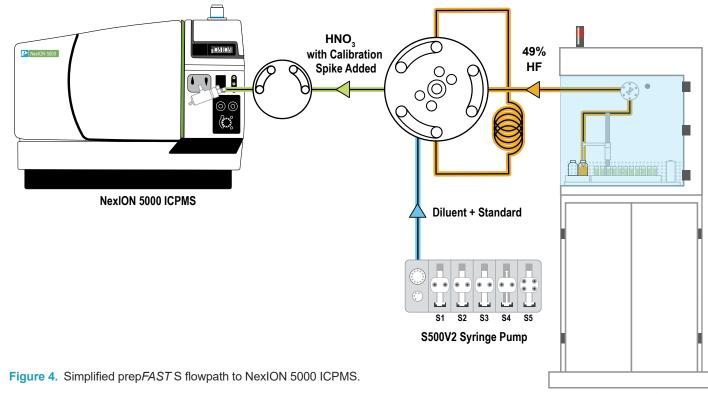


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

Experimental: Reagents and Samples

Commercially available 49% HF was used as sample for all analyses. A 200 ppt, 1% HNO_3 mixed-element standard was prepared from a 100 ppb standard; P was spiked at 200 ppb. All samples and standards were automatically spiked in-line to a final concentration of 0.5% HNO_3 from an on-board reagent supply vessel (containing 70% HNO_3), to match the sample to the calibration standard and stabilize the spiked elements.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO_3 , and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared from the stock solutions automatically by the prep*FAST* S. UPW was used as the carrier solution and samples were introduced at 200 µL/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally.

Table 1. Operating Parameters for HF Analysis.

Parameter	Cool Plasma (STD)	Cool Plasma (DRC)	Warm Plasma (DRC)	Hot Plasma (DRC)	Hot Plasma (STD)		
ICP RF Power (W)		600	1000		1600		
Nebulizer Gas Flow (L/min)	0.99	1.04 0.85		0.98	1.01		
Reaction Gas	-	NH ₃	0 ₂	NH ₃ or O ₂	-		
AMS Gas Flow (L/min)	0.1 0.05						
Auxiliary Gas Flow (L/min)		1.2					
Plasma Gas Flow (L/min)		16					
Sample Flow Rate (mL/min)			0.2				
Nebulizer			Fluoroneb PFA-IC	N			
Spray Chamber			Fluorospray PFA				
Torch		Si	Q Ultra High Purity C	Quartz			
Injector		Fluorobo	re Straight-bore 2.5 r	nm Platinum			
ICPMS Cones		Platinum-tipped Sam	pler and Skimmer w	th Nickel Hyperskim	nmer		
Hyperskimmer Voltage		-50		5			
OmniRing Voltage	-210	-245	-165		-205		
Inner Target Lens Voltage		6	5	5			
Outer Target Lens Voltage	0 -17 -10						

Element	Q1 Mass	Q3 Mass	Power (W)	Reaction Gas	Reaction Gas Flow	QID Fixed Voltage	RPq	Axial Field Voltage
Li	7	7	600	-	0	-20	0.45	0
Be	9	9	1600	_	0	-16.5	0.25	0
B	11	11	600	_	0	-20	0.45	0
Na	23	23	600	NH ₃	1.5	-18.5	0.45	250
Mg	24	24	600	NH ₃	0.5	-18.5	0.45	250
Al	27	27	600	NH ₃	1.5	-18.5	0.45	250
K	39	39	600	NH ₃	0.5	-18.5	0.8	250
Са	40	40	600	NH ₃	0.3	-18.5	0.8	250
P	31	47	1600	0 ₂	1.0	-16.5	0.1	150
Sc	45	61	1600	0 ₂	0.4	-16.5	0.45	150
Ti	48	64	1600	0 ₂	1.0	-16.5	0.1	150
V	51	51	1600	NH ₃	0.2	-16.5	0.45	90
Cr	52	52	600	NH ₃	0.5	-18.5	0.8	250
Mn	55	55	600	NH ₃	0.5	-18.5	0.8	250
Fe	56	56	600	NH ₃	1	-18.5	0.8	250
Ni	58	58	600	NH ₃	0.7	-18.5	0.8	250
Co	59	59	600	NH ₃	0.7	-18.5	0.3	250
Cu	63	63	600	NH ₃	0.3	-18.5	0.45	250
Zn	66	66	1600	NH ₃	0.2	-16.5	0.45	90
Ga	71	71	1600	-	0.2	-16.5	0.45	0
As	75	91	1000	0,	1	-16.5	0.10	150
Rb	85	85	1600	NH ₃	0.2	-16.5	0.45	90
Sr	88	88	1600	-	0	-16.5	0.25	0
Y	89	89	1600	_	0	-16.5	0.25	0
Zr	90	90	1600	_	0	-16.5	0.25	0
Nb	93	93	1600	_	0	-16.5	0.25	0
Mo	98	98	1600	_	0	-16.5	0.25	0
Ru	101	101	1600	-	0	-16.5	0.25	0
Rh	103	103	600		0	-20	0.25	0
Ag	107	107	600		0	-20	0.25	0
In	115	115	1600	_	0	-16.5	0.25	0
Sn	118	118	1600	NH ₃	0.2	-16.5	0.45	90
Ba	137	137	1600	NH ₃	0.2	-16.5	0.45	90
Ce	140	140	1600	-	0.0	-16.5	0.45	0
Ta	181	181	1600	-	0	-16.5	0.25	0
W	184	184	1600	-	0	-16.5	0.25	0
Os	189	189	1600	_	0	-16.5	0.25	0
lr	193	193	1600	-	0	-16.5	0.25	0
TI	205	205	1600	-	0	-16.5	0.25	0
Pb	205	205	1600	-	0	-16.5		0
		208		-	0		0.25	-
Bi U	209 238	209	1600 1600	-	0	-16.5 -16.5	0.25 0.25	0

49% HF

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt (P 1000x higher)

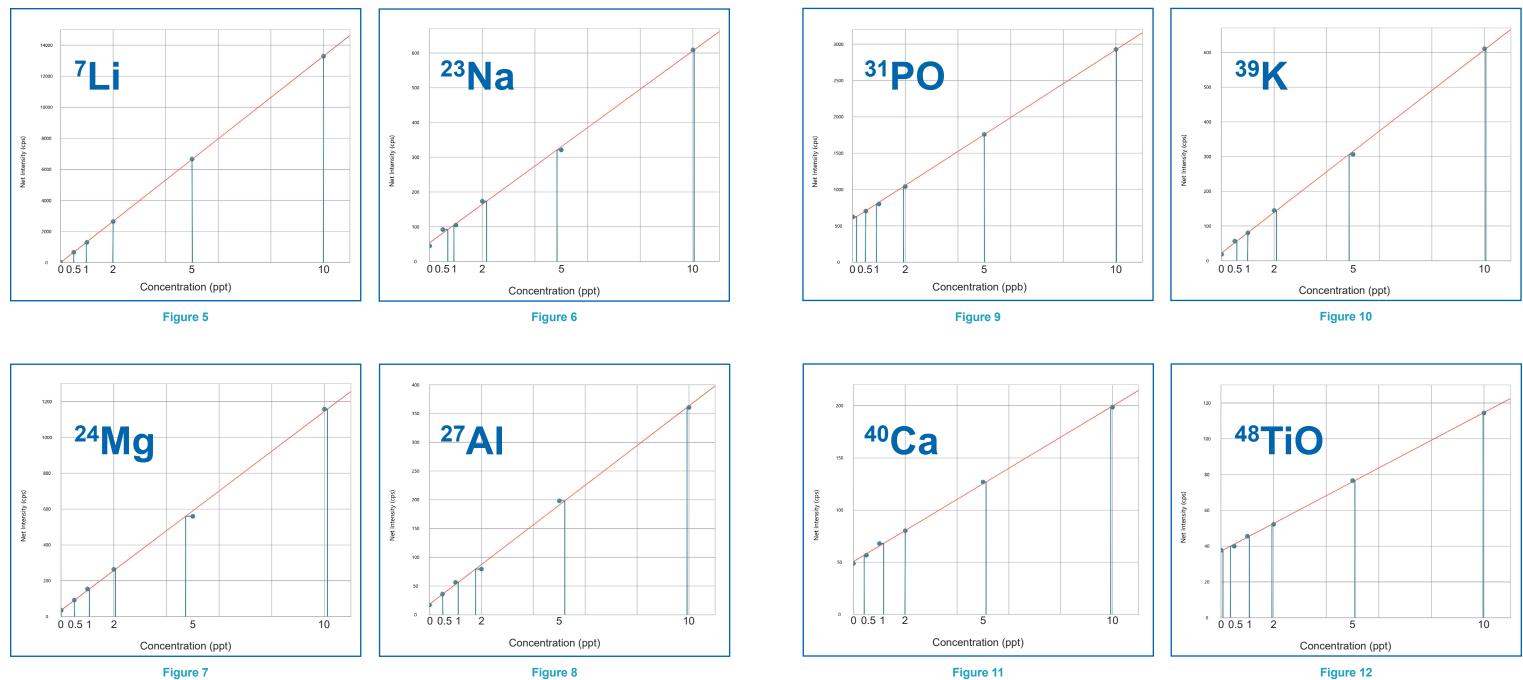


Figure 12

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt

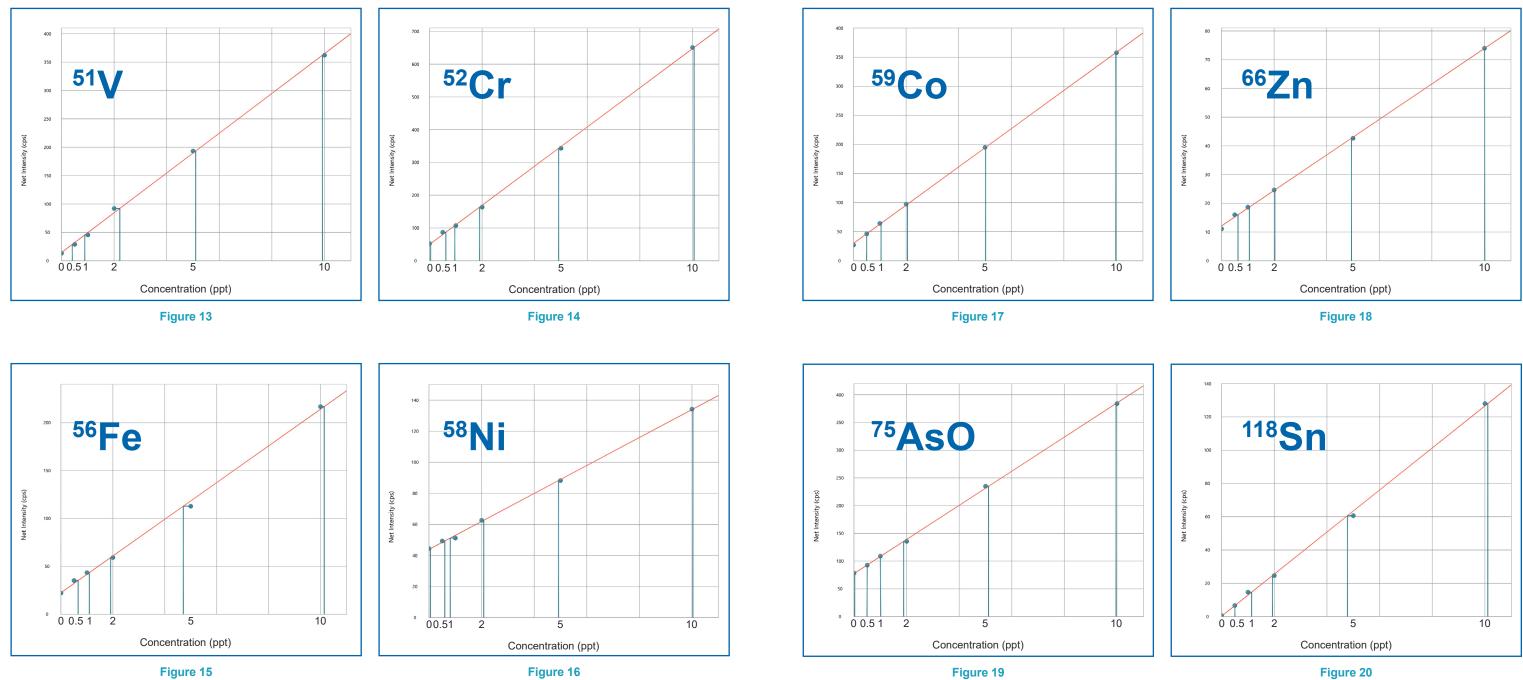


Figure 20

Results and Discussion

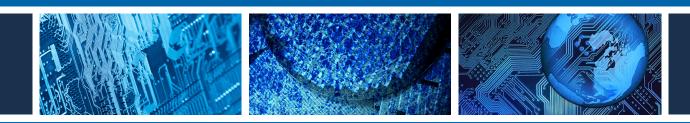
Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD) and correlation coefficient (R) for all elements measured in undiluted HF. Blank subtraction was not used for the determination of BECs or LODs in this study.

Calibrations were automatically prepared at 0, 0.5, 1, 2, 5 and 10 ppt automatically with the prep*FAST* S (P was spiked at 0, 0.5 1, 2, 5 and 10 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in undiluted HF.

Combining the prep*FAST* S with the advantages of various plasma modes, QQQQ filtering and DRC technology allows major contamination-prone elements to be analyzed in the low-ppt range. These advantages make it possible to achieve single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Mg and Ca in undiluted HF. By utilizing the enclosed and vented sampling area in the prep*FAST* S, these results were achieved in a non-clean room environment. The correlation coefficients demonstrate the accuracy of the prep*FAST* S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3. BECs, Calibration Linearity, and LODs in HF.

Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	0.006	0.009	0.999	Rb	0.06	0.4	0.999
Be	0.1	0.3	0.999	Sr	0.02	0.06	0.999
В	8.4	10.0	0.998	Y	0.02	0.1	0.999
Na	0.7	0.2	0.999	Zr	0.5	0.7	0.999
Mg	0.2	0.2	0.999	Nb	0.8	0.7	0.999
Al	0.4	0.9	0.999	Мо	1.4	2.0	0.999
К	0.3	0.2	0.999	Ru	0.3	0.5	0.999
Ca	2.2	1.2	0.999	Rh	0.1	0.1	0.999
P (ppb)	0.9	1.7	0.999	Ag	0.06	0.03	0.999
Sc	0.8	1.0	0.999	In	0.02	0.04	0.999
Ti	2.6	2.0	0.999	Sn	0.06	0.3	0.999
V	0.2	0.3	0.999	Ва	0.07	0.08	0.999
Cr	0.9	0.7	0.999	Ce	0.004	0.2	0.999
Mn	0.05	0.1	0.999	Та	0.05	0.07	0.999
Fe	0.9	0.9	0.999	W	1.6	1.3	0.999
Ni	4.3	3.0	0.999	Os	0.06	0.1	0.999
Co	0.6	0.2	0.999	lr	0.1	0.2	0.999
Cu	0.4	0.2	0.999	TI	0.1	0.1	0.999
Zn	1.8	3.0	0.999	Pb	0.2	0.2	0.999
Ga	1.5	1.0	0.999	Bi	0.1	0.5	0.999
As	2.5	0.5	0.999	U	0.02	0.7	0.999


Conclusions

Fully automated analysis of Hydrofluoric Acid samples was performed using the prepFAST S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prepFAST S achieved linear calibration curves for all elements analyzed. The triple quadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 40 elements were low ppt, while P was low ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- · Automatically performs calibration using MSA or external calibration
- · Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents - without timing or method adjustment

HNO₃ Automated Analysis of Semiconductor Grade HNO₃ with prepFASTS and NexION[®] 5000 ICPMS

Author: Kevin Wiederin

Introduction

Advances in semiconductor technology decreasing tolerances in and microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis within the fab and throughout the supply chain.

Nitric Acid is widely utilized in the

semiconductor industry as a cleaning agent. The reduction of potential

contamination of silicon wafers during

the cleaning process is crucial as

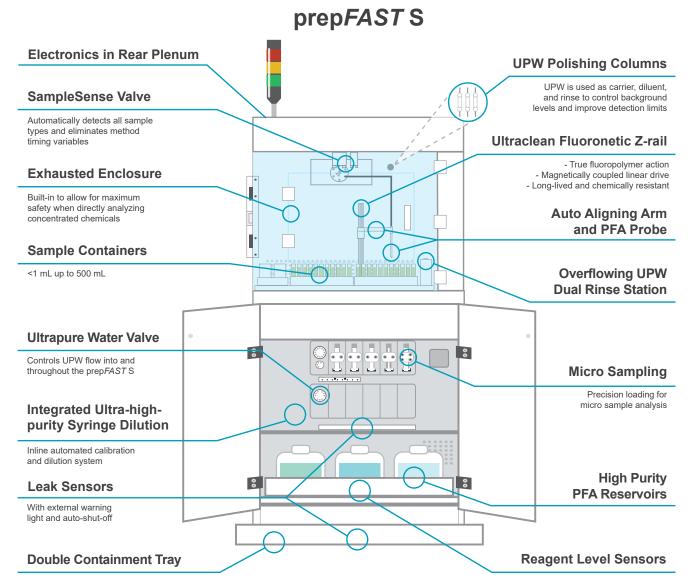
trace metal, particulate and organic contaminants can alter the functionality

of the semiconductors. At the ppt level, environmental contaminants are difficult to control and can easily contaminate a HNO₃ sample if not properly handled.

The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability and providing sub-ppt detection limits for critical semiconductor elements.

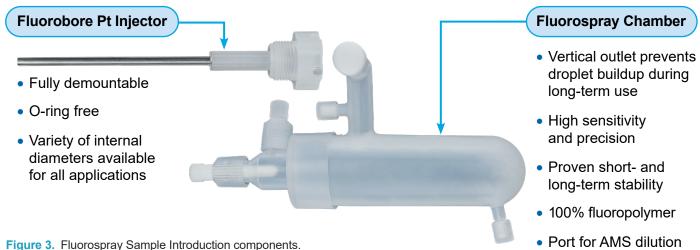
© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 sales@icpms.com www.icpms.com

E S I


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.


Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

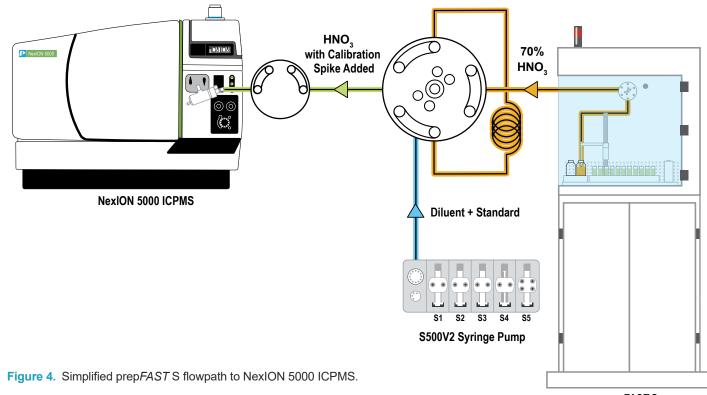


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

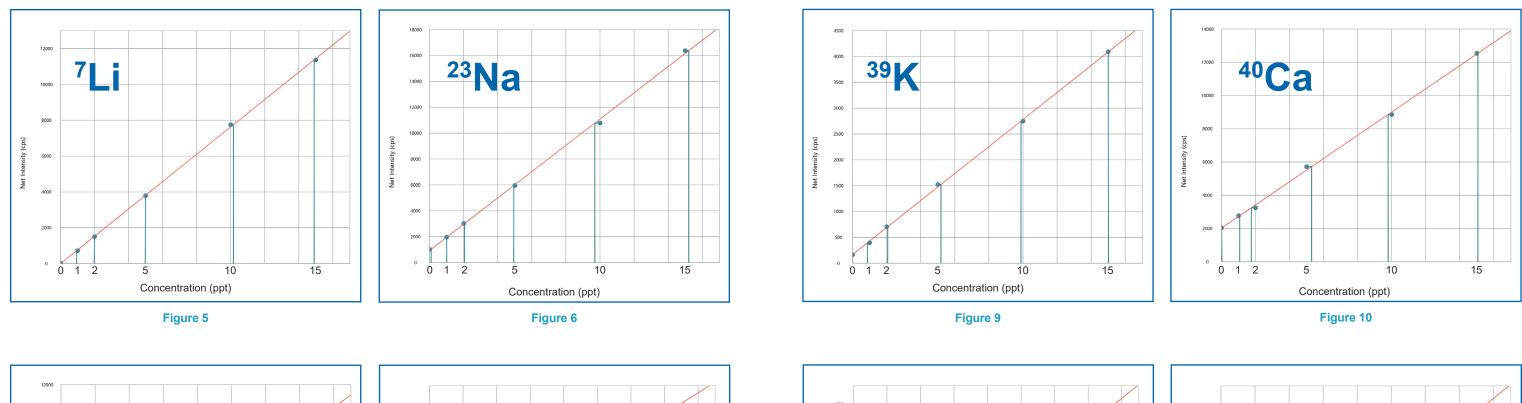
Experimental: Reagents and Samples

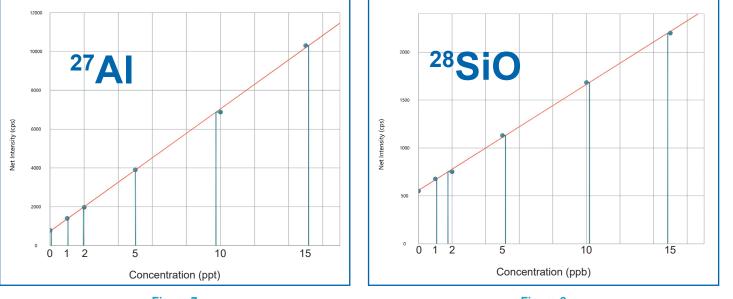
Commercially available HNO_3 was used as sample for all analyses. A 200 ppt, 1% HNO_3 mixed-element standard was prepared from a 100 ppb standard; Si, P and S were spiked at 200 ppb.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO₃, and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared from the stock solutions automatically by the prep*FAST* S. UPW was used as the carrier solution and samples were introduced at 200 μ L/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally.


Table 1. Operating Parameters for HNO₃.


	3							
Parameter	Cool Plasma (DRC)	Warm Plasma (DRC)	Hot Plasma (DRC)	Hot Plasma (STD)				
ICP RF Power (W)	600	1000	900	1600				
Nebulizer Gas Flow (L/min)	0.88	0.88	0.85	1				
Reaction Gas	100% NH ₃	100% O ₂	100% NH ₃	-				
AMS Gas Flow (L/min)		0	.3					
Auxiliary Gas Flow (L/min)		1.2						
Plasma Gas Flow (L/min)		16						
Sample Flow Rate (mL/min)		0.2						
Nebulizer		Fluorone	PFA-ICN					
Spray Chamber		Fluoros	oray PFA					
Torch		SilQ Ultra Hig	h Purity Quartz					
Injector		Fluorobore Straight-t	oore 2.5 mm Platinum					
ICPMS Cones	Platinu	m-tipped Sampler and Sk	immer with Nickel Hyper	skimmer				
Hyperskimmer Voltage	-30	-50		5				
OmniRing Voltage	-220	-210	-160	-165				
Inner Target Lens Voltage			6					
Outer Target Lens Voltage		0 -17						

Element	Q1	Q3	Power	Reaction	Reaction	QID	RPq	Axial
	Mass	Mass	(W)	Gas	Gas Flow	Fixed		Field
						Voltage		Voltag
Li	7	7	600	NH_3	0.1	-18	0.45	125
В	11	11	1600	-	0	-16.5	0.25	0
Na	23	23	600	NH_3	1.2	-18	0.45	125
Mg	24	24	600	NH_3	1.2	-18	0.45	125
Al	27	27	600	NH_3	1.2	-18	0.45	125
Si	28	44	1000	0 ₂	3	-16	0.1	150
Р	31	47	1000	0 ₂	3	-16	0.1	150
S	32	48	1000	0 ₂	3	-16	0.1	150
К	39	39	600	NH_3	1.2	-18	0.8	125
Ca	40	40	600	NH ₃	1.2	-18	0.8	125
Sc	45	61	1000	0 ₂	1	-16	0.45	150
Ti	48	64	1000	0 ₂	1	-16	0.1	150
V	51	67	1000	0 ₂	1	-16	0.1	150
Cr	52	52	600	NH ₃	1.2	-18	0.8	125
Mn	55	55	600	NH ₃	1.2	-18	0.8	125
Fe	56	56	600	NH ₃	1.2	-18	0.8	125
Ni	58	58	600	NH ₃	1.2	-18	0.8	125
Со	59	110	900	NH	1	-18	0.3	125
Cu	63	63	600	NH ₃	1.2	-18	0.45	125
Zn	64	64	600	NH ₃	1.2	-18	0.45	125
Ga	71	71	1600	-	0	-16.5	0.25	0
As	75	91	1000	0 ₂	1	-16	0.1	150
Sr	88	88	1600	-	0	-16.5	0.25	0
Y	89	89	1600	-	0	-16.5	0.25	0
Zr	90	90	1600	_	0	-16.5	0.25	0
Мо	98	98	1600	_	0	-16.5	0.25	0
Ag	107	107	1600	_	0	-16.5	0.25	0
Cd	111	111	1600	_	0	-16.5	0.25	0
In	115	115	1600	_	0	-16.5	0.25	0
Sn	120	120	1600	_	0	-16.5	0.25	0
Sb	123	123	1600	_	0	-16.5	0.25	0
Ba	138	138	1600	_	0	-16.5	0.25	0
Та	181	181	1600	_	0	-16.5	0.25	0
W	184	184	1600	_	0	-16.5	0.25	0
lr	193	193	1600	_	0	-16.5	0.25	0
Au	193	193	1600	-	0	-16.5	0.25	0
TI	205	205	1600	-	0	-16.5	0.25	0
Pb	203	203	1600	-	0	-16.5	0.25	0
Bi	208	208	1600	-	0	-16.5		
DI	209	209	1000	-	U	-10.5	0.25	0

70% HNO₃

Calibrations were automatically performed at 0, 1, 2, 5, 10 and 15 ppt (Si 1000x higher)

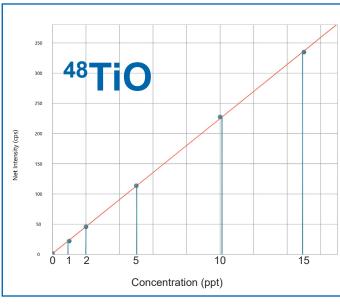


Figure 11

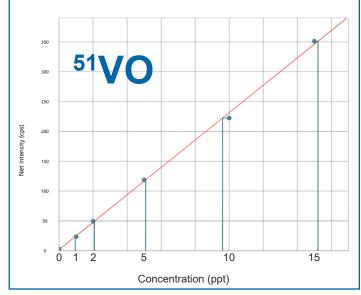


Figure 12

70% HNO₃

Calibrations were automatically performed at 0, 1, 2, 5, 10 and 15 ppt

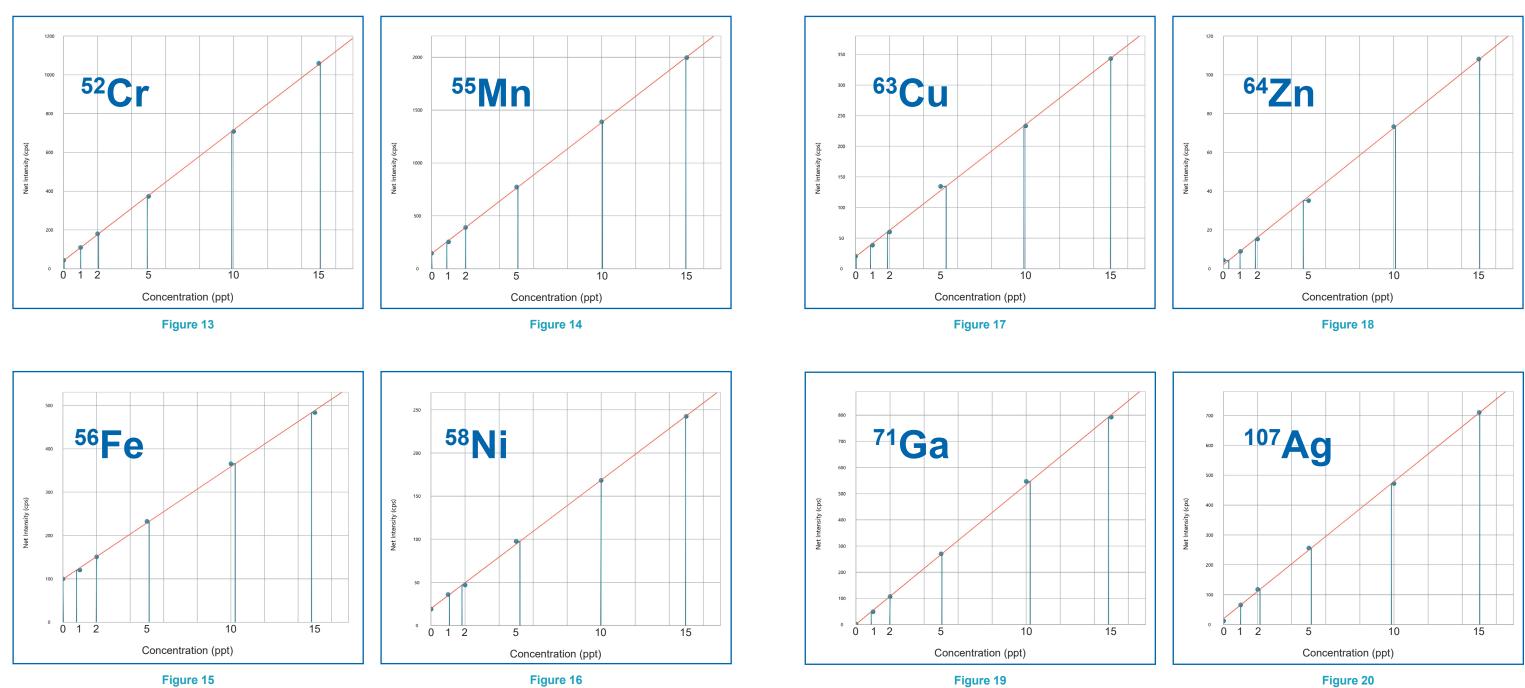


Figure 20

Results and Discussion

Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD) and correlation coefficient (R) for all elements measured in undiluted HNO_3 . Blank subtraction was not used for the determination of BECs or LODs in this study.

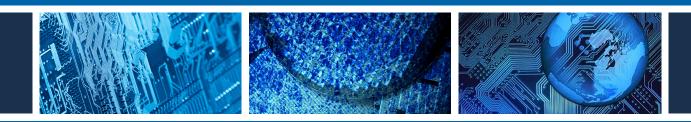
Calibrations were automatically prepared at 0, 1, 2, 5, 10 and 15 ppt automatically with the prep*FAST* S (Si, P and S were spiked at 0, 1, 2, 5, 10 and 15 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in undiluted HNO₃.

Combining the prep*FAST* S with the advantages of various plasma modes, QQQQ filtering and DRC technology allows major contamination-prone elements to be analyzed in the low-ppt range. These advantages make it possible to achieve single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Mg and Ca in undiluted HNO₃. By utilizing the enclosed and vented sampling area in the prep*FAST* S, these results were achieved in a non-clean room environment. The correlation coefficients demonstrate the accuracy of the prep*FAST* S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3	BECs	Calibration	Linearity	and LODs in HN
Table J.		Calibration	Lincanty,	

Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	0.03	0.06	0.999	Ga	0.02	0.1	0.999
В	10.9	10.0	0.999	As	0.06	0.2	0.997
Na	0.7	0.1	0.999	Sr	0.6	0.5	0.999
Mg	1.4	0.6	0.999	Y	1.2	0.2	0.999
Al	1.2	1.2	0.999	Zr	0.7	1.5	0.999
Si (ppb)	5.0	1.8	0.999	Мо	0.4	1.0	0.999
P (ppb)	0.4	0.08	0.999	Ag	0.5	0.7	0.999
S (ppb)	8.1	1.3	0.999	Cd	12.4	2.5	0.998
K	1.7	0.4	0.999	In	1.2	0.2	0.999
Ca	1.5	1.1	0.999	Sn	1.2	3.1	0.999
Sc	0.09	0.1	0.999	Sb	0.09	0.3	0.999
Ti	0.05	0.1	0.999	Ва	0.3	0.1	0.999
V	0.09	0.2	0.999	Та	0.02	0.07	0.999
Cr	0.6	0.5	0.999	W	0.1	0.3	0.999
Mn	1.1	1.0	0.999	lr	1.7	2.0	0.999
Fe	3.8	3.6	0.999	Au	0.1	1.2	0.999
Ni	1.3	2.1	0.999	TI	0.1	0.3	0.999
Со	0.3	0.4	0.999	Pb	0.06	0.3	0.999
Cu	0.9	0.6	0.999	Bi	0.2	0.2	0.999
Zn	0.3	1.9	0.999	U	0.03	0.1	0.999

NΟ₃.


Conclusions

Fully automated analysis of Nitric Acid samples was performed using the prepFAST S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prepFAST S achieved linear calibration curves for all elements analyzed. The triple quadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 40 elements were low ppt, while Si, P and S were low ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- · Automatically performs calibration using MSA or external calibration
- · Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents - without timing or method adjustment

 H_2SO_4 Automated Analysis of Semiconductor Grade H₂SO₄ with prepFASTS and NexION[®] 5000 ICPMS

Author: Kevin Wiederin

Introduction

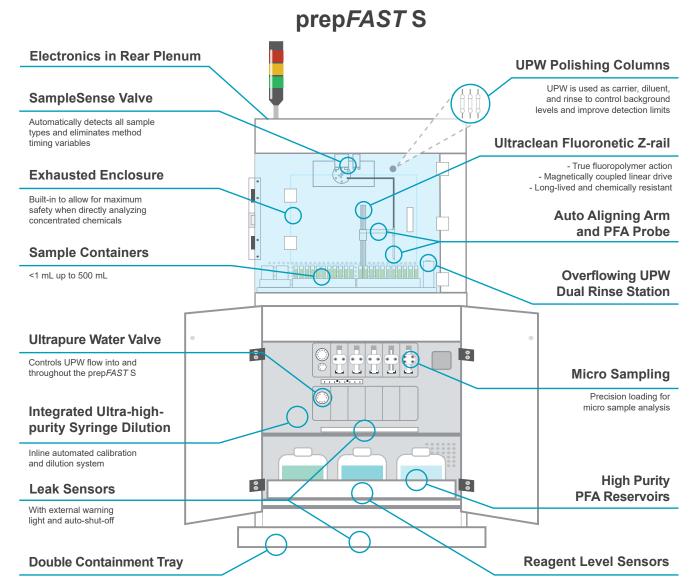
Advances in semiconductor technology decreasing tolerances and in microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis within the fab and throughout the supply chain.

Sulfuric acid (H_2SO_4) is used in the semiconductor industry as a means to clean and etch silicon wafers. The reduction of potential contamination of silicon wafers during the etching process is crucial, as trace metal, particulate, and organic contaminants can alter

the functionality of semiconductors. At the sub-ppt level, environmental contaminants are difficult to control and can easily contaminate a H₂SO₄ sample if not properly handled.

The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability and providing sub-ppt detection limits for critical semiconductor elements.

E S I © Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 sales@icpms.com www.icpms.com


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.

Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

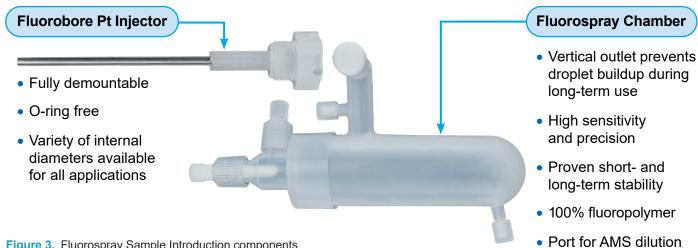


Figure 3. Fluorospray Sample Introduction components.

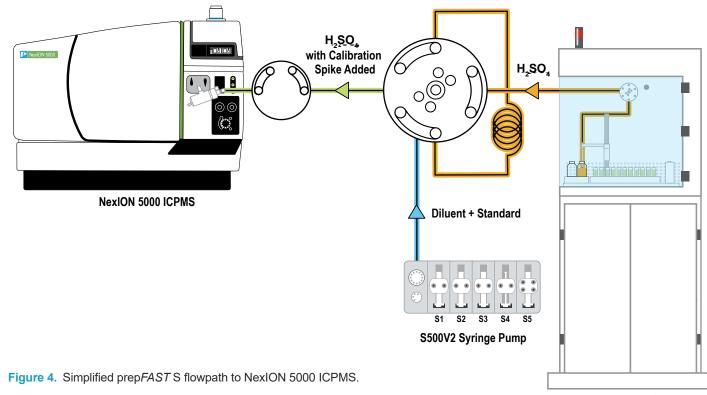


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

Experimental: Reagents and Samples

Commercially available H_2SO_4 was used as sample for all analyses. A 200 ppt, 1% HNO₃ mixed-element standard was prepared from a 100 ppb standard; Si, S, and P were spiked at 200 ppb. All samples and standards were automatically spiked in-line to a final concentration of 0.5% HNO₃ from an onboard reagent supply vessel (containing 70% HNO₃), to match the sample to the calibration standard and stabilize the spiked elements.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO₃, and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared from the stock solutions automatically by the prep*FAST* S. UPW was used as the carrier solution, and samples were introduced at 200 μ L/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering, and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally. NH₃ and O₂ were used as the reaction gases for DRC mode elements.

Table 2. ICPMS Analytical Conditions.

Element	Q1 Mass	Q3 Mass	Power (W)	Reaction Gas	Reaction Gas Flow	RPq	Element	Q1 Mass	Q3 Mass	Power (W)	Reaction Gas	Reaction Gas Flow	RPq
Li	7	7	600	-	0	-20	Ag	107	107	1600	-	0	0.25
Be	9	9	1600	-	0	-16.5	In	115	115	1600	-	0	0.25
Na	23	23	600	-	0	-20	Sn	118	118	1600	NH_3	0.2	0.25
Mg	24	24	600	NH ₃	1.5	-18.5	Sb	121	121	1600	-	0	0.25
Al	27	27	600	NH ₃	0.5	-18.5	Cs	133	133	1600	NH_3	0.5	0.25
Si	28	44	600	NH_3	1.5	-18.5	Ва	137	137	1600	-	0	0.25
Р	31	47	600	NH_3	0.5	-18.5	La	139	139	1600	-	0	0.25
К	39	39	600	NH_3	0.3	-18.5	Ce	140	140	1600	-	0	0.25
Ca	40	40	600	NH ₃	0.3	-18.5	Pr	141	141	1600	-	0	0.25
Ti	48	131	600	NH ₃	0.3	-18.5	Nd	146	146	1600	-	0	0.25
V	51	51	1600	NH ₃	1.0	-16.5	Sm	147	147	1600	-	0	0.25
Cr	52	52	600	NH ₃	0.3	-18.5	Eu	153	153	1600	-	0	0.25
Mn	55	55	600	NH ₃	0.5	-18.5	Gd	157	157	1600	-	0	0.25
Fe	56	56	600	NH ₃	0.5	-18.5	Tb	159	159	1600	-	0	0.25
Ni	58	58	600	NH ₃	1	-18.5	Dy	164	164	1600	-	0	0.25
Со	59	59	600	NH ₃	0.7	-18.5	Ho	165	165	1600	-	0	0.25
Cu	63	63	600	NH ₃	0.7	-18.5	Tm	169	169	1600	-	0	0.25
Zn	64	115	600	NH ₃	0.3	-18.5	Yb	174	174	1600	-	0	0.25
Ga	71	71	1600	NH ₃	0.2	-16.5	Lu	175	175	1600	-	0	0.25
Rb	85	85	1600	-	0	-16.5	Hf	178	178	1600	-	0	0.25
Sr	88	88	1600	NH ₃	0.2	-16.5	Та	181	181	1600	-	0	0.25
Y	89	89	1600	-	0	-16.5	Re	185	185	1600	-	0	0.25
Nb	93	93	1600	-	0	-16.5	Os	189	189	1600	-	0	0.25
Ru	101	101	1600	-	0	-16.5	TI	205	205	1600	-	0	0.25
Rh	103	103	1600	-	0	-16.5	Pb	208	208	1600	-	0	0.25
Pd	106	106	1600	-	0	-16.5	U	238	238	1600	-	0	0.25

Table 1. Operating Parameters H₂SO₄ Analysis.

	2 4 2								
Parameter	Cool Plasma (STD)	Cool Plasma (DRC)	Hot Plasma (DRC)	Hot Plasma (STD)					
ICP RF Power (W)	6	600	1600						
Nebulizer Gas Flow (L/min)	0.99	1.04	0.98	1.01					
Reaction Gas	-	NH3	NH ₃ or O ₂	-					
AMS Gas Flow (L/min)	(0.1	(0.05					
Auxiliary Gas Flow (L/min)		,	1.2						
Plasma Gas Flow (L/min)			16						
Sample Flow Rate (mL/min)		0.2							
Nebulizer		Fluoroneb PFA-ICN							
Spray Chamber		Fluoros	pray PFA						
Torch		SilQ Ultra Hig	h Purity Quartz						
Injector		SilQ Ultra High F	Purity Quartz 2 mm						
ICPMS Cones	Platinu	m-tipped Sampler and Sl	kimmer with Nickel Hype	erskimmer					
Hyperskimmer Voltage	-30	-30 -50 5							
OmniRing Voltage	-2	-165							
Inner Target Lens Voltage		6							
Outer Target Lens Voltage		0 -17							

H_2SO_4

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt (Si 1000x higher)

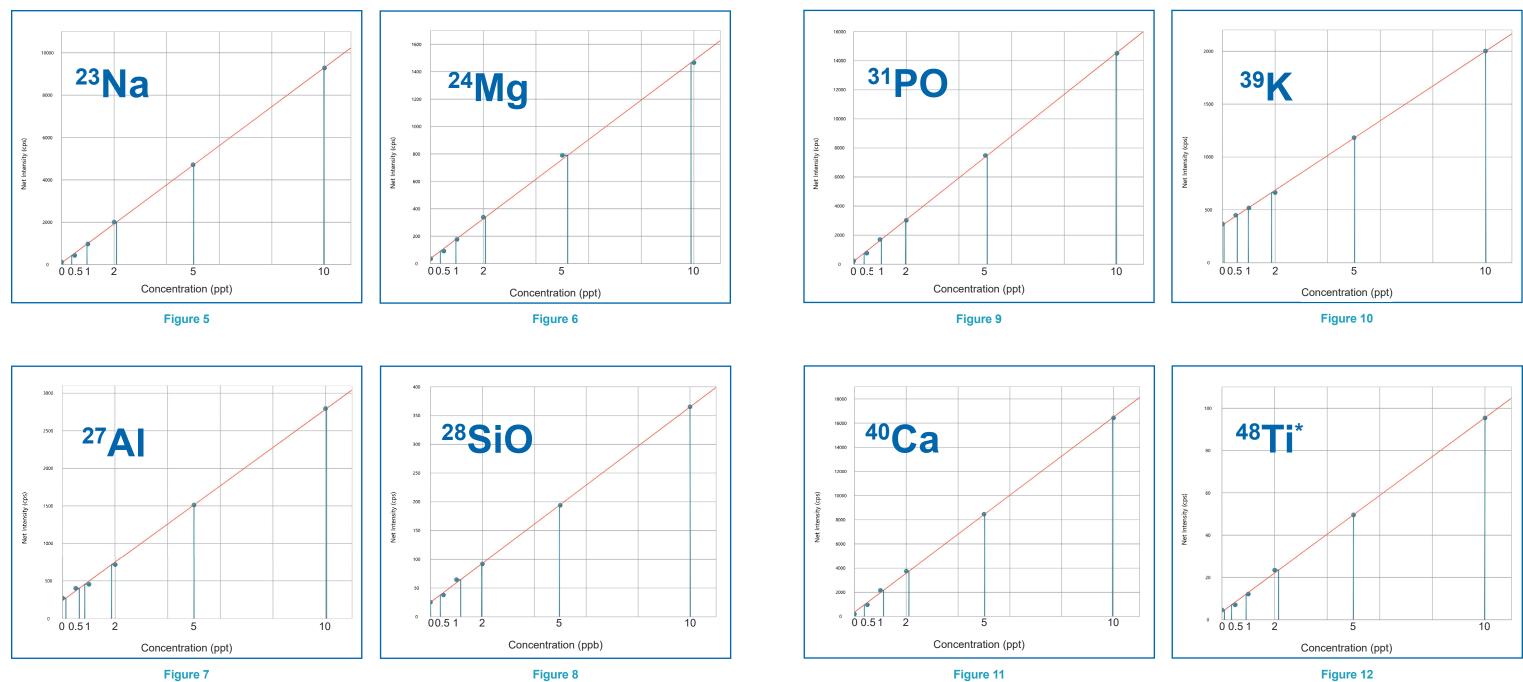


Figure 12

H_2SO_4

All calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt

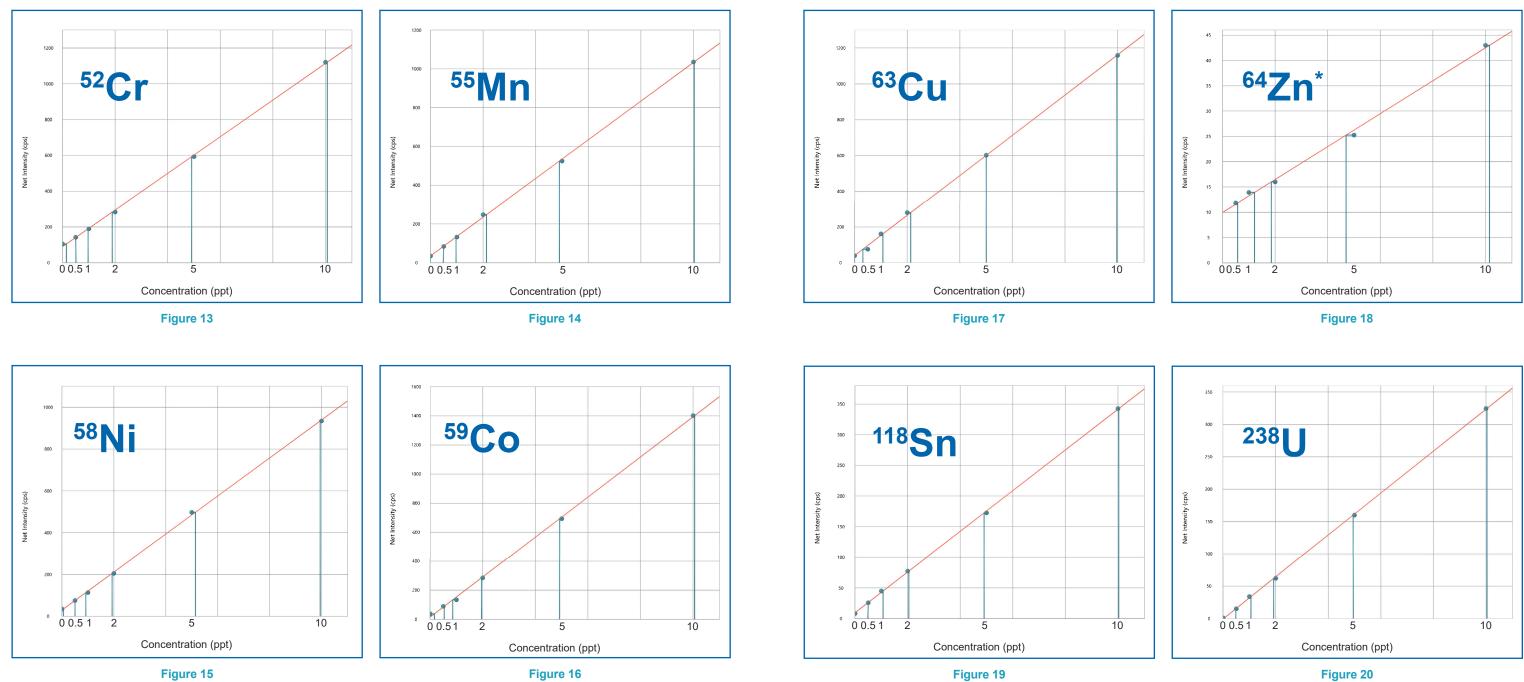


Figure 20

Results and Discussion

Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD), and correlation coefficient (R) for all elements measured in 9.8% H₂SO₄. Blank subtraction was not used for the determination of BECs or LODs in this study.

Calibrations were automatically prepared at 0, 0.5, 1, 2, 5, and 10 ppt automatically with the prepFAST S (Si, S, and P were spiked at 0, 0.5, 1, 2, 5, and 10 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in 9.8% H_2SO_4 .

Combining the prepFAST S with the advantages of various plasma modes, QQQQ filtering, and DRC technology allows major contamination-prone elements to be analyzed in the sub-ppt range. These advantages make it possible to achieve sub-ppt or single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Al, K, Ca, and Fe in 9.8% H₂SO₄. By utilizing the enclosed and vented sampling area in the prepFAST S, these results were achieved in a nonclean room environment. The correlation coefficients demonstrate the accuracy of the prep*FAST* S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3. BECs, Calibration Linearity, and LODs in 9.8% H₂SO₄.

		-	2	4			
Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	0.1	0.1	0.999	Ag	0.05	0.1	0.999
Be	0.1	0.4	0.999	In	0.06	0.04	0.999
Na	0.08	0.3	0.999	Sn	0.3	0.3	0.999
Mg	0.3	0.3	0.999	Sb	0.4	0.2	0.999
Al	0.9	0.4	0.999	Cs	0.07	0.05	0.999
Si	369	481	0.999	Ва	0.09	0.1	0.999
Р	194	302	0.999	La	0.01	0.03	0.999
K	2.1	0.3	0.999	Ce	0.03	0.02	0.999
Са	0.2	0.3	0.999	Pr	0.02	0.1	0.999
Ti	0.4	0.8	0.999	Nd	0.07	0.2	0.999
V	1.6	0.7	0.999	Sm	0.2	0.2	0.999
Cr	0.9	0.2	0.999	Eu	0.008	0.1	0.999
Mn	0.3	0.1	0.999	Gd	0.01	0.1	0.999
Fe	0.9	0.4	0.999	Tb	0.05	0.2	0.999
Ni	0.3	0.4	0.999	Dy	0.02	0.1	0.999
Со	0.1	0.3	0.999	Ho	0.02	0.1	0.999
Cu	0.4	2.1	0.999	Tm	0.01	0.1	0.999
Zn	3.3	4.1	0.998	Yb	0.2	0.2	0.999
Ga	0.03	0.2	0.999	Lu	0.009	0.05	0.999
Rb	0.03	0.3	0.999	Hf	0.03	0.1	0.999
Sr	0.06	0.02	0.999	Та	0.03	0.06	0.999
Y	0.1	0.07	0.999	Re	0.1	0.2	0.999
Nb	0.1	0.1	0.999	Os	0.01	0.1	0.999
Ru	0.4	0.3	0.999	TI	0.01	0.05	0.999
Rh	0.3	0.2	0.999	Pb	0.2	0.1	0.999
Pd	0.08	0.06	0.999	U	0.2	0.06	0.999

Conclusions

Fully automated analysis of Sulfuric Acid samples was performed using the prepFAST S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prepFAST S achieved linear calibration curves for all elements analyzed. The triple guadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 50 elements were sub-ppt, while Si, P, and S were low to sub-ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- · Automatically performs calibration using MSA or external calibration
- · Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents - without timing or method adjustment

TMAH **Automated Analysis of Semiconductor Grade TMAH** with prepFASTS and NexION[®] 5000 ICPMS

Author: Kevin Wiederin

Introduction

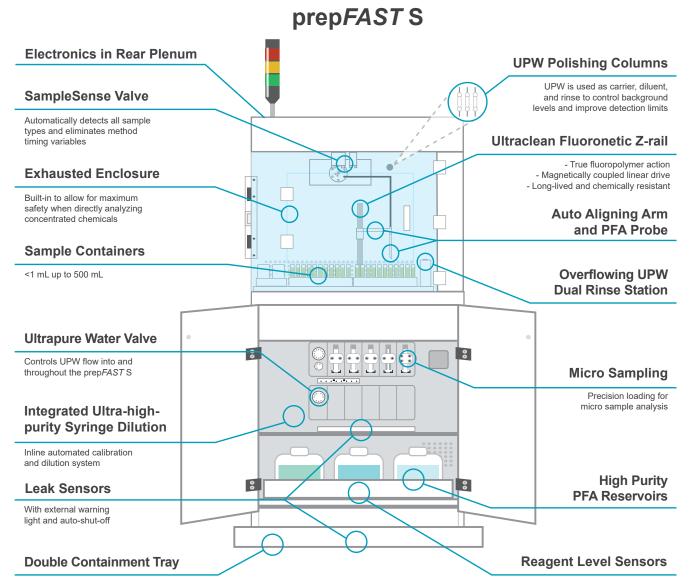
Advances in semiconductor technology decreasing tolerances in and microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis within the fab and throughout the supply chain.

Tetramethylammonium Hydroxide (TMAH) is a basic solvent widely utilized in the semiconductor industry for photoresist development and lithography applications. The reduction of potential contamination of silicon wafers during the etching process is crucial as trace metal, particulate and organic

contaminants can alter the functionality of the semiconductors. At the ppt level, environmental contaminants are difficult to control and can easily contaminate a TMAH sample if not properly handled.

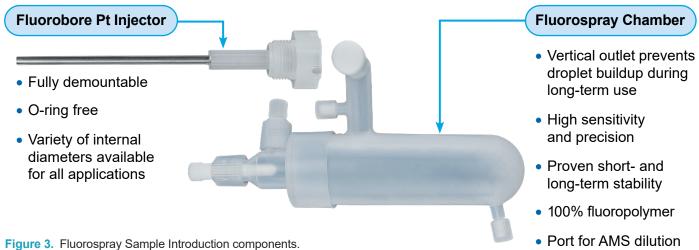
The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability, and providing sub-ppt detection limits for critical semiconductor elements.

E S I


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.


Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

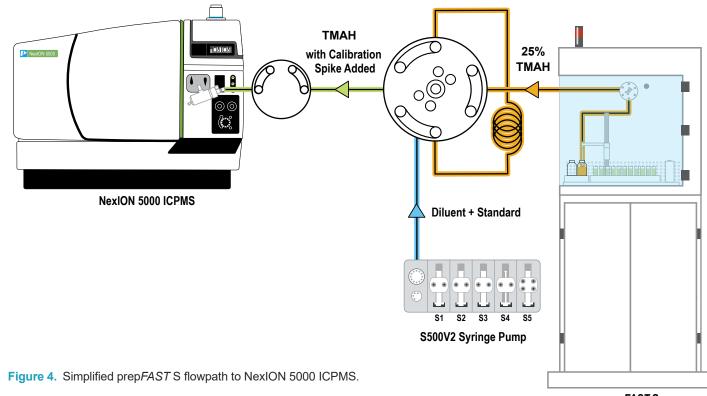


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

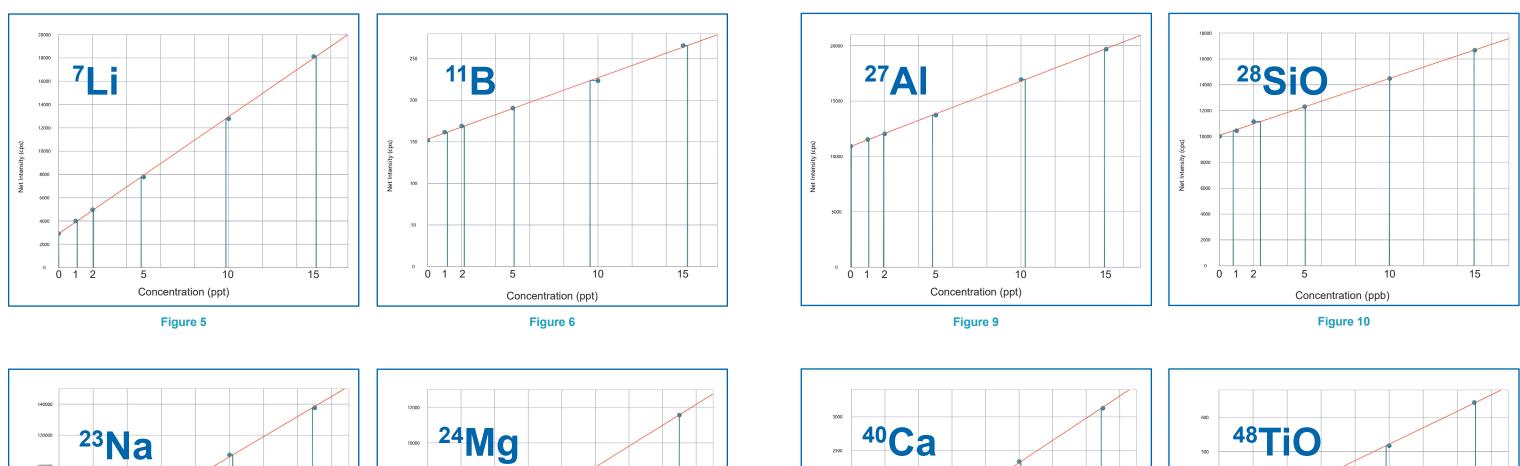
Experimental: Reagents and Samples

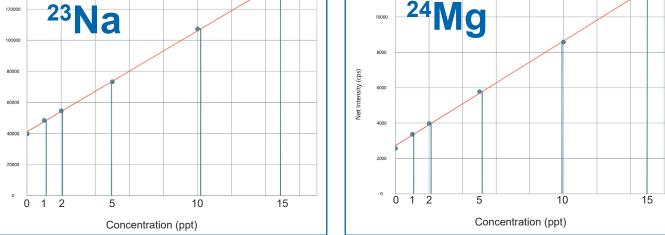
Commercially available 25% TMAH was used as sample for all analyses. A 200 ppt, 1% HNO_3 mixed-element standard was prepared from a 100 ppb standard; Si was spiked at 200 ppb. All samples and standards were automatically spiked in-line to a final concentration of 0.5% HNO_3 from an on-board reagent supply vessel (containing 70% HNO_3), to match the sample to the calibration standard and stabilize the spiked elements.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO_3 and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared automatically from the stock solutions by the prep*FAST* S. UPW was used as the carrier solution and samples were introduced at 200 µL/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering, and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally.


Table 1. Operating Parameters for TMAH Analysis.


Parameter	Cool Plasma (DRC)	Cool Plasma (DRC)	Warm Plasma (DRC)	Hot Plasma (DRC)	Hot Plasma (STD)					
ICP RF Power (W)	600	600 1000		16	500					
Nebulizer Gas Flow (L/min)	0.93	0.8	0.85	0.94	0.84					
Reaction Gas	100% NH ₃	100% O ₂	100% NH ₃	100% NH ₃	-					
AMS Gas Flow (L/min)		0.3								
Auxiliary Gas Flow (L/min)			1.2							
Plasma Gas Flow (L/min)			16							
Sample Flow Rate (mL/min)		0.2								
Nebulizer		Fluoroneb PFA-ICN								
Spray Chamber			Fluorospray PFA							
Torch		Sil	Q Ultra High Purity Q	uartz						
Injector		Fluorobor	e Straight-bore 2.5 m	nm Platinum						
ICPMS Cones	PI	Platinum-tipped Sampler and Skimmer with Nickel Hyperskimmer								
Hyperskimmer Voltage	-30	-50		5						
OmniRing Voltage	-220	-210	-160	-165	-165					
Inner Target Lens Voltage		6								
Outer Target Lens Voltage		0 -17								

Element	Q1	Q3	Power	Reaction	Reaction	QID	RPq	Axial
	Mass	Mass	(W)	Gas	Gas Flow	Fixed		Field
						Voltage		Voltag
Li	7	7	600	NH ₃	0.1	-18	0.45	125
Be	9	9	1600	-	0	-16.5	0.25	0
В	11	11	1600	-	0	-16.5	0.25	0
Na	23	23	600	NH ₃	1.2	-18	0.45	125
Mg	24	24	600	NH ₃	1.2	-18	0.45	125
AI	27	27	600	NH ₃	1.2	-18	0.45	125
Si	28	44	1000	0 ₂	3	-16	0.1	150
К	39	39	600	NH_3	1.2	-18	0.8	125
Ca	40	40	600	NH_3	1.2	-18	0.8	125
Ti	48	131	900	NH_3	1	-18	0.3	125
V	51	67	1000	0 ₂	1	-16	0.1	150
Cr	52	52	600	NH ₃	1.2	-18	0.8	125
Mn	55	55	600	NH ₃	1.2	-18	0.8	125
Fe	56	56	600	NH ₃	1.2	-18	0.8	125
Co	59	110	900	NH ₃	1	-18	0.3	125
Ni	60	111	900	NH ₃	1	-18	0.3	125
Cu	65	65	600	NH ₃	1.2	-18	0.45	125
Zn	64	115	900	NH ₃	1	-18	0.3	125
Ga	71	71	600	NH ₃	0.1	-18	0.45	125
As	75	91	1000	0 ₂	1	-16	0.45	150
Sr	88	88	1600	-	0	-16.5	0.25	0
Y	89	89	1600	-	0	-16.5	0.25	0
Zr	90	90	1600	-	0	-16.5	0.25	0
Мо	98	98	1600	-	0	-16.5	0.25	0
Ag	107	107	1600	-	0	-16.5	0.25	0
Cd	111	111	1600	-	0	-16.5	0.25	0
In	115	115	1600	-	0	-16.5	0.25	0
Sn	120	120	1600	-	0	-16.5	0.25	0
Sb	121	121	1600	-	0	-16.5	0.25	0
Ва	138	138	1600	-	0	-16.5	0.25	0
Ce	140	140	1600	-	0	-16.5	0.25	0
W	184	184	1600	-	0	-16.5	0.25	0
Pt	195	195	1600	-	0	-16.5	0.25	0
Au	197	197	1600	-	0	-16.5	0.25	0
TI	205	205	1600	-	0	-16.5	0.25	0
Pb	208	208	1600	-	0	-16.5	0.25	0
Bi	209	209	1600	-	0	-16.5	0.25	0
U	238	238	1600	_	0	-16.5	0.25	0

25% TMAH

Calibrations were automatically performed at 0, 1, 2, 5 and 15 ppt (Si 1000x higher)

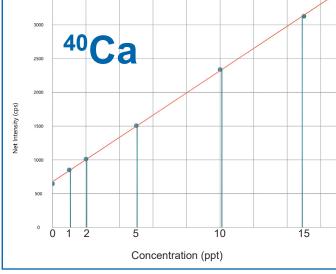


Figure 7

Figure 11

cps)

Net

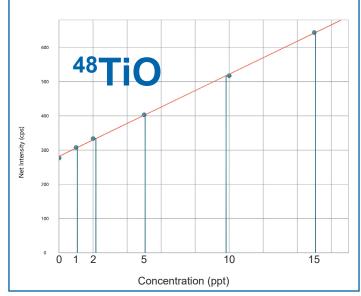


Figure 12

25% TMAH

Calibrations were automatically performed at 0, 1, 2, 5, 10 and 15 ppt

Figure 19

Figure 20

Results and Discussion

Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD), and correlation coefficient (R) for all elements measured in undiluted TMAH. Blank subtraction was not used for the determination of BECs or LODs in this study.

Calibrations were automatically prepared at 0, 1, 2, 5, 10, and 15 ppt automatically with the prepFAST S (Si was spiked at 0, 1, 2, 5, 10, and 15 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in undiluted TMAH.

Combining the prepFAST S with the advantages of multiple plasma modes, QQQQ filtering, and DRC technology allows major contamination-prone elements to be analyzed in the low-ppt range. These advantages make it possible to achieve single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Mg and Ca, in undiluted TMAH. By utilizing the enclosed and vented sampling area in the prepFAST S, these results were achieved in a non-clean room environment. The correlation coefficients demonstrate the accuracy of the prepFAST S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3. BECs, Calibration Linearity, and LODs in TMAH.

Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	2.8	0.6	0.999	As	0.8	0.2	0.999
Be	0.1	0.4	0.999	Sr	0.9	1.1	0.999
В	21.9	1.8	0.999	Y	0.1	0.2	0.999
Na	5.6	1.4	0.999	Zr	1.0	0.3	0.999
Mg	4.6	0.9	0.999	Мо	2.1	2.9	0.999
Al	18.5	1.3	0.999	Ag	0.1	0.5	0.999
Si	22.9 (ppb)	1.3 (ppb)	0.999	Cd	0.2	1.0	0.999
K	14.9	3.8	0.995	In	0.1	0.2	0.999
Са	3.8	1.0	0.999	Sn	9.8	2.2	0.999
Ti	11.8	2.2	0.999	Sb	1.6	0.6	0.999
V	0.1	0.6	0.999	Ce	0.08	0.07	0.999
Cr	21.8	10.8	0.997	Ва	1.6	0.7	0.999
Mn	2.5	0.4	0.999	W	0.5	0.3	0.999
Fe	12.4	8.3	0.998	Pt	4.8	2.6	0.999
Со	0.07	0.1	0.999	Au	2.7	0.7	0.999
Ni	15.0	2.6	0.998	TI	0.05	0.1	0.999
Cu	5.0	1.2	0.999	Pb	0.2	0.2	0.999
Zn	20.6	6.3	0.997	Bi	0.1	0.2	0.999
Ga	0.2	1.1	0.998	U	0.07	0.07	0.999

Conclusions

Fully automated analysis of Tetramethylammonium Hydroxide samples was performed using the prepFAST S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prepFAST S achieved linear calibration curves for all elements analyzed. The triple quadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 35 elements were low ppt, while Si was low ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- · Automatically performs calibration using MSA or external calibration
- · Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents - without timing or method adjustment

Ultrapure Water Automated Analysis of Semiconductor Grade UPW

with prepFAST S and NexION[®] 5000 ICPMS

Author: Kevin Wiederin

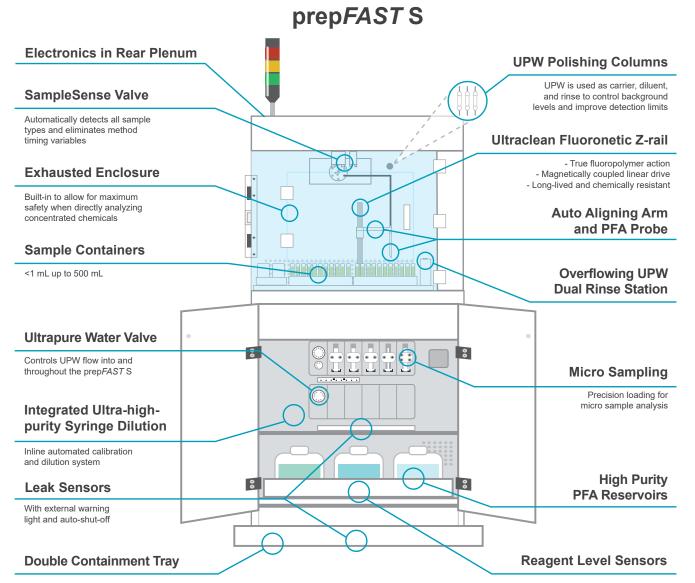
Introduction

Advances in semiconductor technology and decreasing tolerances in microchip design require simultaneous improvements in both chemical purity and fabrication. As manufacturers move to <10 nm geometry, while seeking improved yield, the chemicals and process reagents must maintain minimal trace metal contamination. The demand for lower detection limits in reagents requires new approaches to sample handling and trace elemental analysis – within the fab and throughout the supply chain.

Ultrapure water (UPW) is widely utilized in the semiconductor as a cleaning agent. The reduction of potential contamination of silicon wafers during the cleaning process is crucial as trace metal, particulate and organic contaminants can alter the functionality of the semiconductors. At the ppt level, environmental contaminants are difficult to control and can easily contaminate an UPW sample if not properly handled

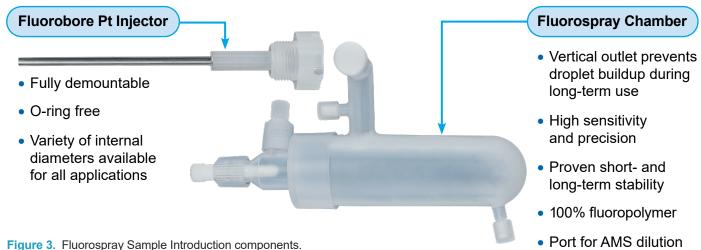
The prepFAST S ultraclean sample preparation and introduction system minimizes contamination from the environment and sample handling, enabling semiconductor manufacturers and laboratories to easily analyze these critical samples. The prepFAST S features inline, automated calibration and dilution technology that automates sample and standard preparation. Samples are analyzed directly from their original containers in an exhausted and fully enclosed environment, eliminating manual sampling errors and operator variability, and providing sub-ppt detection limits for critical semiconductor elements.

E S I © Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 sales@icpms.com www.icpms.com


© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com

prepFAST S

The prepFAST S utilizes a robust PFA probe, CTFE AutoAlign Arm, and sealed PTFE vertical probe drive assembly combined with high-purity, chemically conditioned fluoropolymer flow paths to minimize contamination and maximize chemical resistance. When combined with an exhausted, enclosed sample environment, these features allow automated dilution, acidification, and spiking of concentrated semiconductor chemicals resulting in high-quality calibrations and accurate, precise determination of background equivalent concentrations and detection limits.


Calibrations are generated by automatically spiking from an enclosed multi-element stock standard using either automated inline method of standard addition (MSA) or external calibration for over 50 elements that are typically controlled in semiconductor manufacturing processes. When combined with the interference reduction modes and multi-quadrupole functionality of the NexION 5000 ICPMS, the result is low to sub-ppt calibrations.

For sample analysis, the prepFAST S allows automatic dilution by volume or weight for direct analysis of concentrated chemicals from their original sample vessels. This feature eliminates sample contamination caused by manual dilution into a secondary container and significantly reduces operator exposure to concentrated and hazardous chemicals.

Fluorospray Sample Introduction

The Fluorospray sample introduction kit for the NexION 5000 is a new, HF-resistant technology offering enhanced precision and sensitivity for the analysis of semiconductor-grade ultrapure chemicals. Designed for demanding, multichemical

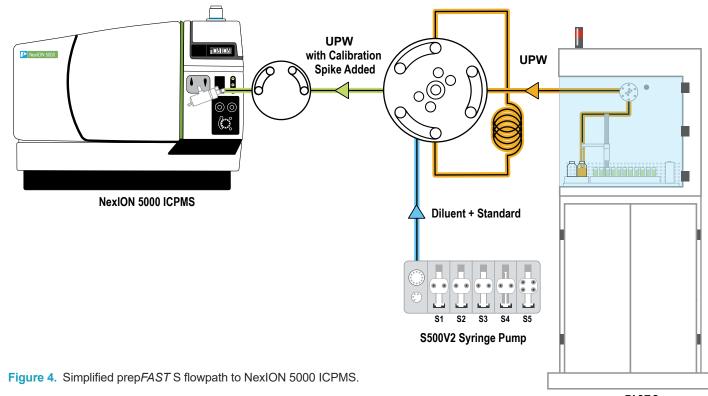


Figure 2. prepFAST S features diagram.

analysis, the Fluorospray chamber combined with an o-ring free Fluorobore platinum injector provides complete highperformance sample introduction for the semiconductor laboratory.

or option gas

prepFAST S

Experimental: Reagents and Samples

Commercially available UPW was used as sample for all analyses. A 500 ppt, 1% HNO_3 mixed-element standard was prepared from a 100 ppb standard; Si, P, and S were spiked at 500 ppb. All samples and standards were automatically spiked in-line to a final concentration of 0.5% HNO_3 from an onboard reagent supply vessel (containing 70% HNO_3), to match the sample to the calibration standard and stabilize the spiked elements.

The prep*FAST* S utilized syringe-driven flow of ultrapure water, semiconductor grade HNO_3 and standard solution to automate sample and MSA standard preparation. All MSA standards were prepared automatically from the stock solutions by the prep*FAST* S. UPW was used as the carrier solution and samples were introduced at 200 µL/min.

Experimental: Instrumentation

The NexION 5000 multi-quadrupole ICPMS was used with the Fluorospray sample introduction kit and a microflow PFA-ICN concentric integrated capillary nebulizer. The NexION 5000 automatically switches between cool, warm, and hot plasma conditions to optimize the analysis of all analytes. Cool plasma works in tandem with the multi-quadrupole technology of the NexION 5000 to reduce polyatomic ion interferences while simultaneously reducing background from the ICPMS interface for elements that can be thermally ionized. Hot plasma ensures ionization of refractory and high ionization-potential elements and maintains high matrix tolerance, allowing for analysis of nearly the entire periodic table. Combining multiple plasma conditions, QQQQ filtering, and DRC technology allows for excellent detection limits and accurate determination of trace metals in semiconductor chemicals. Instrumental parameters and sample introduction hardware are listed in Table 1. NexION method parameters are shown in Table 2. DRC gas flow rates and RPq values were determined experimentally.

Table 1. Operating Parameters for UPW Analysis.

Parameter	Cool Plasma (DRC)	Warm Plasma Shift (DRC)	Warm Plasma Cluster (DRC)	Hot Plasma (STD)				
ICP RF Power (W)	600	1000	900	1600				
Nebulizer Gas Flow (L/min)	0.9	0.9	0.85	1				
Reaction Gas	100% NH ₃	100% O ₂	100% NH ₃	-				
AMS Gas Flow (L/min)	0.1							
Auxiliary Gas Flow (L/min)		1	.2					
Plasma Gas Flow (L/min)		1	6					
Sample Flow Rate (mL/min)		0.2						
Nebulizer		Fluoronel	D PFA-ICN					
Spray Chamber		Fluoros	pray PFA					
Torch		SilQ Ultra Hig	h Purity Quartz					
Injector		Fluorobore Straight-t	oore 2.5 mm Platinum					
ICPMS Cones	Platinu	m-tipped Sampler and Sk	immer with Nickel Hyper	skimmer				
Hyperskimmer Voltage	-30	-50		5				
OmniRing Voltage	-220	-210	-160	-165				
Inner Target Lens Voltage		6						
Outer Target Lens Voltage	ens Voltage 0 -17							

Element	Q1	Q3	Power	Reaction	Reaction	QID Fixed	RPq	Axial Fie
	Mass	Mass	(W)	Gas	Gas Flow	Voltage		Voltage
Li	7	7	600	NH_3	0.1	-18	0.45	125
В	11	11	1600	-	0	-16.5	0.25	0
Na	23	23	600	NH_3	1.2	-18	0.45	125
Mg	24	24	600	NH_3	1.2	-18	0.45	125
Al	27	27	600	NH_3	1.2	-18	0.45	125
Si	28	44	1000	0 ₂	3	-16	0.1	150
Р	31	47	1000	0 ₂	3	-16	0.1	150
S	32	48	1000	0 ₂	3	-16	0.1	150
K	39	39	600	NH ₃	1.2	-18	0.8	125
Ca	40	40	600	NH ₃	1.2	-18	0.8	125
Sc	45	61	1000	0 ₂	1	-16	0.45	150
Ti	48	64	1000	0 ₂	1	-16	0.1	150
V	51	67	1000	0 ₂	1	-16	0.1	150
Cr	52	52	600	NH ₃	1.2	-18	0.8	125
Mn	55	55	600	NH ₃	1.2	-18	0.8	125
Fe	56	56	600	NH	1.2	-18	0.8	125
Ni	58	58	600	NH ₃	1.2	-18	0.8	125
Со	59	59	600	NH ₃	1	-18	0.3	125
Cu	63	63	600	NH ₃	1.2	-18	0.45	125
Zn	64	64	600	NH ₃	1.2	-18	0.45	125
Ga	71	71	1600	-	0	-16.5	0.25	0
As	75	91	1000	0 ₂	1	-16	0.1	150
Sr	88	88	1600	-	0	-16.5	0.25	0
Y	89	89	1600	-	0	-16.5	0.25	0
Zr	90	90	1600	-	0	-16.5	0.25	0
Мо	98	98	1600	-	0	-16.5	0.25	0
Ag	107	107	1600	_	0	-16.5	0.25	0
Cd	111	111	1600	-	0	-16.5	0.25	0
In	115	115	1600	-	0	-16.5	0.25	0
Sn	120	120	1600	-	0	-16.5	0.25	0
Sb	123	123	1600	-	0	-16.5	0.25	0
Ва	138	138	1600	-	0	-16.5	0.25	0
Та	181	181	1600	-	0	-16.5	0.25	0
W	184	184	1600	-	0	-16.5	0.25	0
lr	193	193	1600	-	0	-16.5	0.25	0
Au	197	197	1600	-	0	-16.5	0.25	0
TI	205	205	1600	_	0	-16.5	0.25	0
Pb	208	208	1600	_	0	-16.5	0.25	0
Bi	209	209	1600	_	0	-16.5	0.25	0
U	238	238	1600		0	-16.5	0.25	0

UPW

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt (B 10x higher)

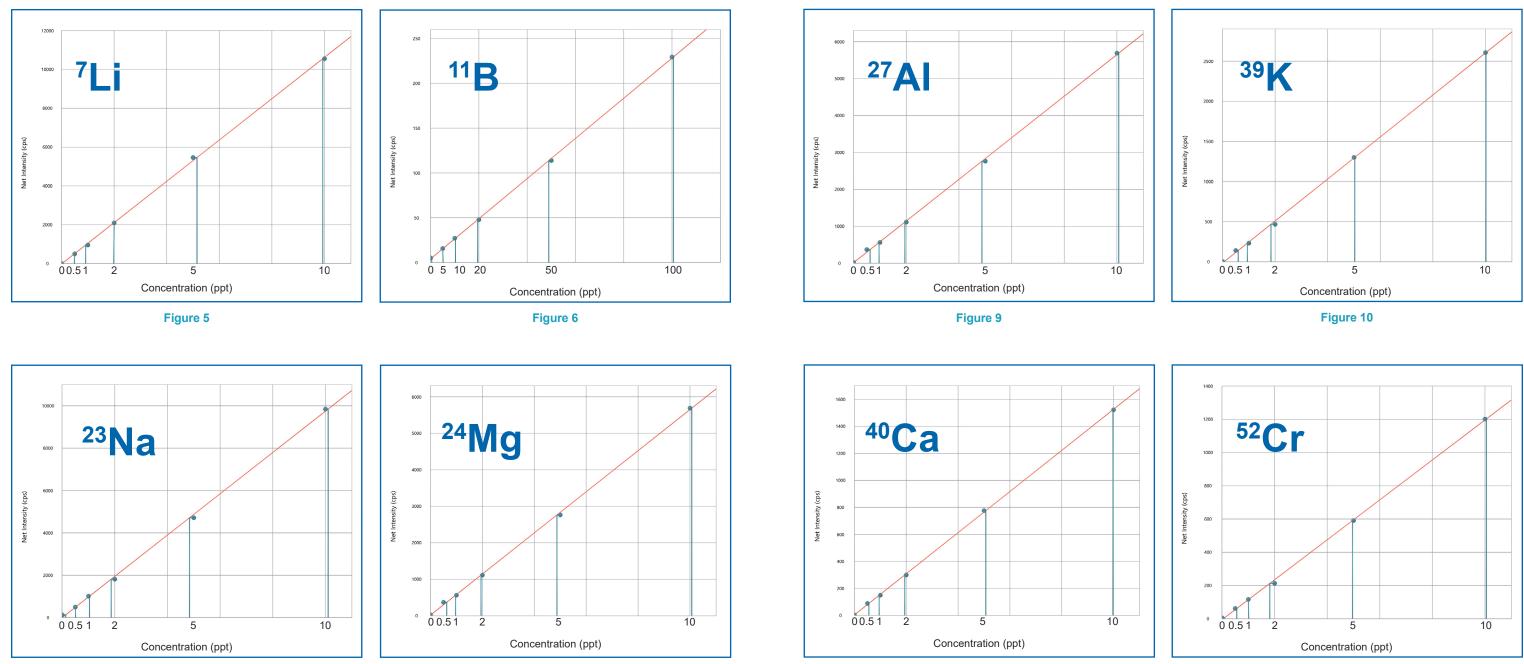


Figure 11

Figure 8

Figure 7

Figure 12

UPW

Calibrations were automatically performed at 0, 0.5, 1, 2, 5 and 10 ppt

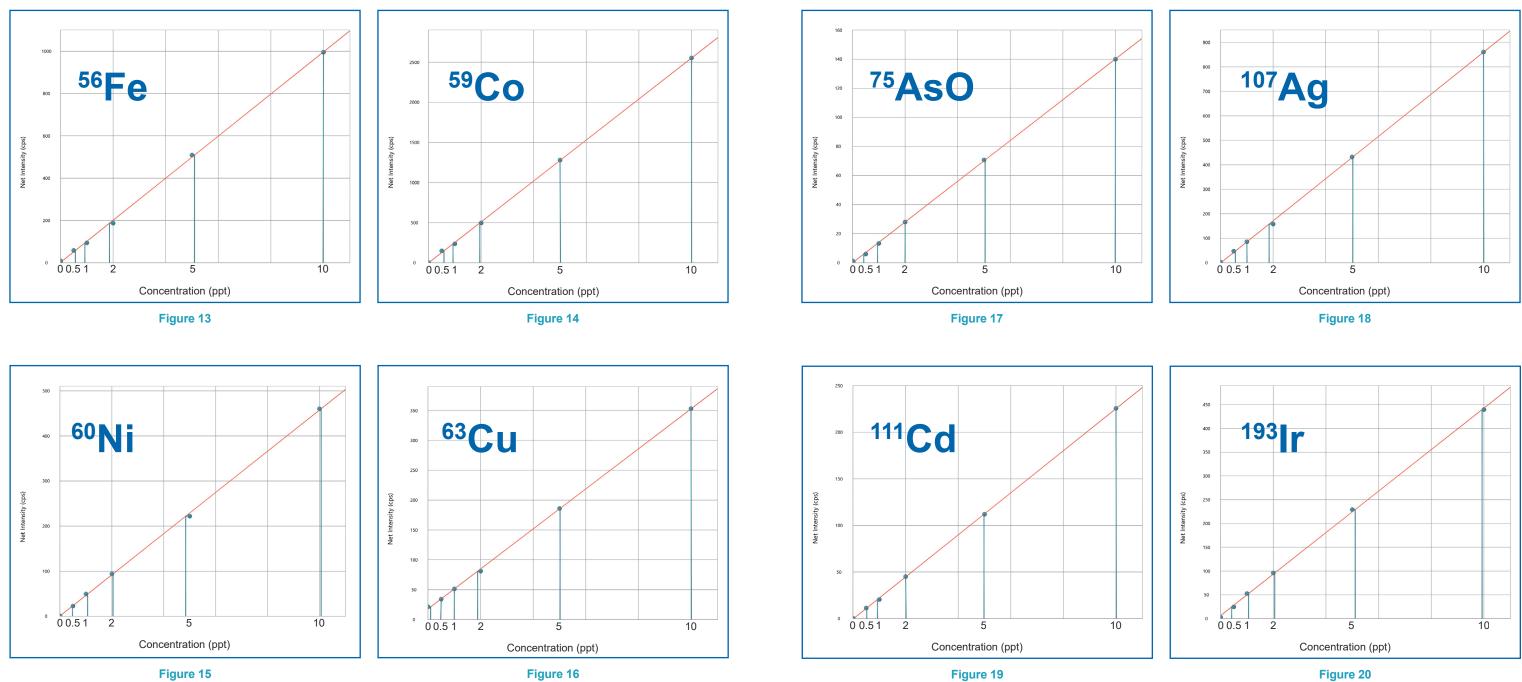


Figure 20

Results and Discussion

Table 3 shows background equivalent concentrations (BEC), limits of detection (LOD), and correlation coefficient (R) for all elements measured in UPW. Blank subtraction was not used for the determination of BECs or LODs in this study.

Calibrations were automatically prepared at 0, 0.5, 1, 2, 5 and 10 ppt automatically with the prepFAST S (Si, P and S were spiked at 0, 0.5, 1, 2, 5 and 10 ppb). Figures 5-20 show calibration curves for a selection of elements with MSA in UPW.

Combining the prepFAST S with the advantages of multiple plasma modes, QQQQ filtering, and DRC technology allows major contamination-prone elements to be analyzed in the low-ppt range. These advantages make it possible to achieve single-digit-ppt BEC and LOD levels for historically difficult elements such as Na, Mg and Ca, in UPW. By utilizing the enclosed and vented sampling area in the prep*FAST* S, these results were achieved in a non-clean room environment. The correlation coefficients demonstrate the accuracy of the prepFAST S automatic dilution and spike addition, which enables calibrations in complicated matrices with excellent results.

Table 3. BECs, Calibration Linearity, and LODs in UPW.

Element	BEC (ppt)	LOD (ppt)	Linearity (R)	Element	BEC (ppt)	LOD (ppt)	Linearity (R)
Li	0.003	0.005	0.999	Ga	0.01	0.01	0.999
В	0.2	0.05	0.999	As	0.02	0.1	0.999
Na	0.04	0.01	0.999	Sr	0.02	0.03	0.999
Mg	0.01	0.01	0.999	Y	0.06	0.2	0.999
AI	0.02	0.05	0.999	Zr	0.05	0.2	0.999
Si	2.4 (ppb)	0.2 (ppb)	0.999	Мо	0.4	0.2	0.999
Р	0.4 (ppb)	0.06 (ppb)	0.999	Ag	0.03	0.03	0.999
S	4.8 (ppb)	0.4 (ppb)	0.999	Cd	0.01	0.02	0.998
К	0.01	0.02	0.999	In	0.01	0.2	0.999
Ca	0.02	0.02	0.999	Sn	0.7	0.2	0.999
Sc	0.01	0.03	0.999	Sb	0.03	0.07	0.999
Ti	0.02	0.05	0.999	Ba	0.01	0.1	0.999
V	0.01	0.03	0.999	Та	0.01	0.03	0.999
Cr	0.02	0.03	0.999	W	0.1	0.2	0.999
Mn	0.02	0.01	0.999	lr	0.02	0.07	0.999
Fe	0.05	0.04	0.999	Au	0.1	0.2	0.999
Ni	0.01	0.02	0.999	TI	0.01	0.06	0.999
Со	0.008	0.005	0.999	Pb	0.05	0.08	0.999
Cu	0.3	0.1	0.999	Bi	0.6	0.5	0.999
Zn	0.2	0.1	0.999	U	0.01	0.03	0.999

Conclusions

Fully automated analysis of Ultrapure Water samples was performed using the prep*FAST* S and NexION 5000 Triple Quad ICPMS. The automated dilution and MSA calibration capabilities of the prep*FAST* S achieved linear calibration curves for all elements analyzed. The triple quadrupole ICPMS allowed for elimination of key polyatomic interferences, and detection limits for 40 elements were low ppt, while Si, P and S were low ppb.

Summary

prepFAST S fully automates sample analysis in an ultraclean enclosed system:

- Offers ultrapure semiconductor-grade chemical preparation, dilution, and analysis with detection limits in ppt/ppq range with ICPMS
- Allows for direct analysis of concentrated chemicals without pre-dilution
- Automatically performs calibration using MSA or external calibration
- Includes a magnetically coupled PTFE/CTFE drive as part of the most chemically resistant autosampler on the market
- Utilizes SampleSense valve to detect all samples viscous, non-viscous, solvents without timing or method adjustment

75

www.icpms.com

© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 402-991-7800 | sales@icpms.com | www.icpms.com